Cross-View Regularization for Domain Adaptive Panoptic Segmentation
(Supplemental Material)

1. More Illustrations in Domain Adaptive Panoptic Segmentation

We provide more qualitative illustrations that compare the proposed CVRN with state-of-the-art methods over three domain
adaptive panoptic segmentation tasks as shown in Figures 1 to 3.
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Figure 1. Qualitative comparison of CVRN with state-of-the-art methods CRST [6], FDA [5] and AdvEnt [4] for domain adaptive panoptic
segmentation over the task “SYNTHIA — Cityscapes” (synthetic-to-real). CVRN segments more accurate foreground “things” (i.e.,
countable objects) and background “stuff” (i.e., amorphous regions) in panoptic segmentation. The superior performance is largely at-
tributed to the proposed cross-view regularization that encourages semantic consistency between different views. Best viewed in color and
zoom in for details.
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Figure 2. Qualitative comparison of CVRN with state-of-the-art methods CRST [6], FDA [5] and AdvEnt [4] for domain adaptive panoptic
segmentation over the task “SYNTHIA — Mapillary” (synthetic-to-real). CVRN segments more accurate foreground “things” (i.e.,
countable objects) and background “stuff” (i.e., amorphous regions) in panoptic segmentation. The superior performance is largely at-
tributed to the proposed cross-view regularization that encourages semantic consistency between different views. Best viewed in color and
zoom in for details.
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Figure 3. Qualitative comparison of CVRN with state-of-the-art methods CRST [6], FDA [5] and AdvEnt [4] for domain adaptive panoptic

segmentation over the task “Cityscapes — Mapillary” (real-to-real). CVRN segments more accurate foreground “things” (i.e., countable

objects) and background “stuff” (i.e., amorphous regions) in panoptic segmentation. The superior performance is largely attributed to the
proposed cross-view regularization that encourages semantic consistency between multiple views. Best viewed in color and zoom in for
details.




2. More Illustrations in Domain Adaptive Semantic Segmentation

We provide more qualitative illustrations that compare the proposed CVRN with state-of-the-art methods over domain adap-

tive semantic segmentation task as shown in Figure 4.

Figure 4. Qualitative comparison of CVRN with state-of-the-art methods CRST [6], FDA [5] and AdvEnt [4] for domain adaptive semantic
segmentation over the task “SYNTHIA — Cityscapes”. CVRN outperforms the state-of-the-art methods by providing more accurate

pixel-level segmentation. The superior performance is largely attributed to the proposed cross-view regularization that exploits confident
instance predictions to benefit semantic segmentation. Best viewed in color and zoom in for details.
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3. Dataset Details

SYNTHIA [3] is a large-scale synthetic dataset with 9,400 images that are generated by random perturbation of virtual
environments. This dataset provides pixel-level annotations for semantic segmentation as well as object-level labels for
instance segmentation. Panoptic segmentation annotations can be obtained by fusing “stuff” regions as annotated for semantic
segmentation with object labels as annotated for instance segmentation. All the images have the same resolution of 760 x
1280.

Cityscapes [ 1] is a widely used autonomous driving dataset with images captured by an image acquisition system mounted in
a driving vehicle. It consists of 2,975 training images and 500 validation images with dense manual annotations for panoptic
segmentation. All the images have the same resolution of 1024 x 2048.

Mapillary Vistas [2] is a large-scale autonomous driving dataset with images captured by different image acquisition sensors.
It consists of 18,000 training images and 2,000 validation images with high-quality annotations for panoptic segmentation.
The resolution of the dataset image varies from 768 x 1024 to 4000 x 6000.



4. More Illustrations in Domain Adaptive Instance Segmentation

We provide more qualitative illustrations that compare the proposed CVRN with state-of-the-art methods over domain adap-
tive instance segmentation task as shown in Figure 5.
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Figure 5. Qualitative comparison of CVRN with state-of-the-art methods CRST [6], FDA [5] and AdvEnt [4] for domain adaptive instance
segmentation over the task “SYNTHIA — Cityscapes”: CVRN outperforms the state-of-the-art by detecting more objects (e.g., car and
person) with more accurate boundaries and less false positives. The superior performance is largely attributed to the proposed cross-view
regularization that exploits confident semantic predictions to benefit instance segmentation. Best viewed in color and zoom in for details.
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