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Dataset Ceres-CG PBA STBA Ours-G Ours-BG Ours-B
Union Square 17.9 5.65 32.5 2.97 1.86 1.67
P. del Popolo 8.49 2.13 18.3 0.90 1.13 1.09
Ellis Island 18.6 4.67 14.50 1.60 1.63 1.42

NYC Library 6.43 1.65 - 2.90 1.45 1.38
M. N. Dame 52.1 10.2 37.5 1.76 1.56 1.21
Gen. markt 65.0 15.7 95.5 4.05 1.32 1.06

Alamo 16.5 4.95 217 1.5 1.37 1.23
Yorkminster 36.3 9.66 115 3.76 3.24 2.95

Roman Forum 60.0 16.3 167 6.80 6.02 4.13
V. Cathedral 36.9 11.5 75.3 4.45 2.58 2.23

M. Metropolis 30.1 8.33 216 7.16 3.15 2.94
Piccadily 95.2 24.0 828 7.79 4.21 3.85

T. of London 377 95.36 1052 45.7 8.74 5.46
Trafalgar 188 49.8 6739 34.8 6.79 5.59

Table 1. Time (second) takes for different methods to optimize the
problems in 1DSFM [3] dataset.

1. Evaluation

1.1. Evaluation on 1DSFM

We report the time (second) and memory (GB) usage in
Table 1 and Table 2 for 1DSFM [3] dataset for different
methods including We compare our methods with Ceres [1]
using conjugate gradient (Ceres-CG), PBA [4], STBA [5]
and different variants of our methods. For our methods, we
report “Ours-G” as our Pytorch-based LM solver that op-
timizes the problem globally as a whole. “Ours-BG” and
“Ours-B” represent stochastic domain composition using
our whole pipeline with and without global reinitialization.
The statistics lead to the same conclusion derived from Sec-
tion 4.1 (Efficiency and Memory) in the main paper.

Among existing global solvers, PBA [4] on GPU is faster
than other algorithms run in multicore CPU implementa-
tion. Ours-G is even faster than PBA by directly calling an
efficient “index add ” in Pytorch to implement JT r.

“Ours-G” uses less memory than other existing solvers.
Typically, we use less memory to compute jacobians with
our backward jacobian network. By solving subproblems in
parallel for “Ours-BG” and “Ours-B”, we significantly re-

Dataset Ceres-CG PBA STBA Ours-G Ours-BG Ours-B
Union Square 0.094 0.055 0.168 0.044 0.021 0.006
P. del Popolo 0.106 0.065 0.190 0.051 0.023 0.006
Ellis Island 0.110 0.071 0.172 0.056 0.026 0.007

NYC Library 0.131 0.079 - 0.061 0.034 0.008
M. N. Dame 0.201 0.143 0.320 0.108 0.040 0.014
Gen. markt 0.207 0.148 0.384 0.115 0.041 0.015

Alamo 0.228 0.156 0.544 0.121 0.043 0.015
Yorkminster 0.238 0.175 0.388 0.136 0.042 0.018

Roman Forum 0.311 0.218 0.576 0.176 0.053 0.022
V. Cathedral 0.347 0.232 0.608 0.183 0.067 0.023

M. Metropolis 0.444 0.314 0.640 0.239 0.094 0.030
Piccadily 0.598 0.425 2.360 0.330 0.103 0.041

T. of London 1.121 0.739 1.472 0.596 0.237 0.076
Trafalgar 1.406 0.963 7.328 0.767 0.256 0.099

Table 2. Memory (GB) used by different methods to optimize the
problems in 1DSFM [3] dataset.

duce the computation time and maximum memory usage for
each sub-problem. Therefore, our stochastic solver supports
the optimization of problems on a very large scale. “Ours-
B” is more efficient than “Ours-BG” considering time and
memory since it does not perform global reinitialization by
slightly sacrificing the quality. In practice, either of them
can be used depending on whether the application prefers
quality or speed.

1.2. Solver robustness

We repeat processing Ladybug dataset using “ours-B”
for 5 times, and the final losses are 1.131, 1.129, 1.138,
1.133, 1.139. As a result, our stochastic solver shows sta-
bility for preserving the quality of the solution.

1.3. Performance Profiling

We follow [5] and report the performance profile of all
19 scenes in Table 2 of the main paper in Figure 1 by setting
τ = 0.1. We show significant performance increase among
existing methods.
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Figure 1. Performance Profile.

2. Implementation Details
2.1. Solver Interface

We aim at providing an general solver with a easy-to-use
interface. The interface of our solver is implemented using
Python that takes four inputs, including a list of variables
x = {vi}, a list of constants ci, a list of variable indices Ii,
and a user-defined function f . f takes arguments in the or-
der of (v1(I1), ...,vm(Im), c1, ...cn) and output a residual
r. Each input is a tensor with multiple dimensions imple-
mented in Pytorch. The j-th element for the variable indices
as Ii[j] corresponds to the j-th residual rj . We allow both
Ii[j] and rj to have multiple dimensions, but require that
indices inside Ii[j] for each j is unique. As a result, a non-
linear least squares problem can be easily formulated using
our solver.

2.2. Jacobian Representation

The loss of backward jacobian network can be imple-
mented by computing residuals r from inputs defined in
Section 2.1. Then, we compute the loss L as the reduced
sum of r. It is important that we set {vi(Ii)} rather than
{vi} as network parameters, and collect their gradients by
calling backward function from L. As a result, we collect
a set of gradient tensors {gi}, each of which has the same
dimensions with vi(Ii). The final jacobian is stored as a list
of tensors as {g1, ...,gm, I1, ..., Im}.

2.3. Kernels

To implement an LM solver in Pytorch, two most impor-
tant kernels are the computation of Jx and JT r. Jx can be
computed as shown in Equation 1.

Jx =

m∑
i=1

Jivi (1)

Ji is represented using (gi, Ii). Specifically, we compute
Jivi as the reduced sum over all dimensions except the first
one for gi ◦ vi(Ii), where ◦ represents the element-wise
multiplication operator.

JT r leads to a tensor with the same dimensions as
the variable x. Therefore, we use a list of m tensors
{JT

1 r, ...,J
T
mr} to represent it. To compute JT

i r, we first
expand r to r∗i which have the same dimension as gi does.
We compute gi ◦ r∗i and call “index add ” to compute the
reduced sum of gi ◦ r∗i through index Ii.

Combining these components with other basic tensor op-
erators, we implement an LM solver with a preconditioned
conjugate gradient linear solver in Pytorch. The linear
solver terminates if the relative error is smaller than 1e− 3
or the number of linear steps is larger than 150. Triggs cor-
rection [2] can be further integrated as a robust kernel in the
system.
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