
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#615

CVPR
#615

CVPR 2021 Submission #615. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Supplemental Material for “DeepLM: Large-scale Nonlinear Least Squares on
Deep Learning Frameworks using Stochastic Domain Decomposition”

Anonymous CVPR 2021 submission

Paper ID 615

Dataset Ceres-CG PBA STBA Ours-G Ours-BG Ours-B
Union Square 17.9 5.65 32.5 2.97 1.86 1.67
P. del Popolo 8.49 2.13 18.3 0.90 1.13 1.09
Ellis Island 18.6 4.67 14.50 1.60 1.63 1.42

NYC Library 6.43 1.65 - 2.90 1.45 1.38
M. N. Dame 52.1 10.2 37.5 1.76 1.56 1.21
Gen. markt 65.0 15.7 95.5 4.05 1.32 1.06

Alamo 16.5 4.95 217 1.5 1.37 1.23
Yorkminster 36.3 9.66 115 3.76 3.24 2.95

Roman Forum 60.0 16.3 167 6.80 6.02 4.13
V. Cathedral 36.9 11.5 75.3 4.45 2.58 2.23

M. Metropolis 30.1 8.33 216 7.16 3.15 2.94
Piccadily 95.2 24.0 828 7.79 4.21 3.85

T. of London 377 95.36 1052 45.7 8.74 5.46
Trafalgar 188 49.8 6739 34.8 6.79 5.59

Table 1. Time (second) takes for different methods to optimize the
problems in 1DSFM [3] dataset.

1. Evaluation

1.1. Evaluation on 1DSFM

We report the time (second) and memory (GB) usage in
Table 1 and Table 2 for 1DSFM [3] dataset for different
methods including We compare our methods with Ceres [1]
using conjugate gradient (Ceres-CG), PBA [4], STBA [5]
and different variants of our methods. For our methods, we
report “Ours-G” as our Pytorch-based LM solver that op-
timizes the problem globally as a whole. “Ours-BG” and
“Ours-B” represent stochastic domain composition using
our whole pipeline with and without global reinitialization.
The statistics lead to the same conclusion derived from Sec-
tion 4.1 (Efficiency and Memory) in the main paper.

Among existing global solvers, PBA [4] on GPU is faster
than other algorithms run in multicore CPU implementa-
tion. Ours-G is even faster than PBA by directly calling an
efficient “index add ” in Pytorch to implement JT r.

“Ours-G” uses less memory than other existing solvers.
Typically, we use less memory to compute jacobians with
our backward jacobian network. By solving subproblems in
parallel for “Ours-BG” and “Ours-B”, we significantly re-

Dataset Ceres-CG PBA STBA Ours-G Ours-BG Ours-B
Union Square 0.094 0.055 0.168 0.044 0.021 0.006
P. del Popolo 0.106 0.065 0.190 0.051 0.023 0.006
Ellis Island 0.110 0.071 0.172 0.056 0.026 0.007

NYC Library 0.131 0.079 - 0.061 0.034 0.008
M. N. Dame 0.201 0.143 0.320 0.108 0.040 0.014
Gen. markt 0.207 0.148 0.384 0.115 0.041 0.015

Alamo 0.228 0.156 0.544 0.121 0.043 0.015
Yorkminster 0.238 0.175 0.388 0.136 0.042 0.018

Roman Forum 0.311 0.218 0.576 0.176 0.053 0.022
V. Cathedral 0.347 0.232 0.608 0.183 0.067 0.023

M. Metropolis 0.444 0.314 0.640 0.239 0.094 0.030
Piccadily 0.598 0.425 2.360 0.330 0.103 0.041

T. of London 1.121 0.739 1.472 0.596 0.237 0.076
Trafalgar 1.406 0.963 7.328 0.767 0.256 0.099

Table 2. Memory (GB) used by different methods to optimize the
problems in 1DSFM [3] dataset.

duce the computation time and maximum memory usage for
each sub-problem. Therefore, our stochastic solver supports
the optimization of problems on a very large scale. “Ours-
B” is more efficient than “Ours-BG” considering time and
memory since it does not perform global reinitialization by
slightly sacrificing the quality. In practice, either of them
can be used depending on whether the application prefers
quality or speed.

1.2. Solver robustness

We repeat processing Ladybug dataset using “ours-B”
for 5 times, and the final losses are 1.131, 1.129, 1.138,
1.133, 1.139. As a result, our stochastic solver shows sta-
bility for preserving the quality of the solution.

1.3. Performance Profiling

We follow [5] and report the performance profile of all
19 scenes in Table 2 of the main paper in Figure 1 by setting
τ = 0.1. We show significant performance increase among
existing methods.

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#615

CVPR
#615

CVPR 2021 Submission #615. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

100 101 102 103

alpha

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Ceres-S
Ceres-CG
PBA
H-SFM
STBA
Ours-G
Ours-BG
Ours-B

Figure 1. Performance Profile.

2. Implementation Details
2.1. Solver Interface

We aim at providing an general solver with a easy-to-use
interface. The interface of our solver is implemented using
Python that takes four inputs, including a list of variables
x = {vi}, a list of constants ci, a list of variable indices Ii,
and a user-defined function f . f takes arguments in the or-
der of (v1(I1), ...,vm(Im), c1, ...cn) and output a residual
r. Each input is a tensor with multiple dimensions imple-
mented in Pytorch. The j-th element for the variable indices
as Ii[j] corresponds to the j-th residual rj . We allow both
Ii[j] and rj to have multiple dimensions, but require that
indices inside Ii[j] for each j is unique. As a result, a non-
linear least squares problem can be easily formulated using
our solver.

2.2. Jacobian Representation

The loss of backward jacobian network can be imple-
mented by computing residuals r from inputs defined in
Section 2.1. Then, we compute the loss L as the reduced
sum of r. It is important that we set {vi(Ii)} rather than
{vi} as network parameters, and collect their gradients by
calling backward function from L. As a result, we collect
a set of gradient tensors {gi}, each of which has the same
dimensions with vi(Ii). The final jacobian is stored as a list
of tensors as {g1, ...,gm, I1, ..., Im}.

2.3. Kernels

To implement an LM solver in Pytorch, two most impor-
tant kernels are the computation of Jx and JT r. Jx can be
computed as shown in Equation 1.

Jx =

m∑
i=1

Jivi (1)

Ji is represented using (gi, Ii). Specifically, we compute
Jivi as the reduced sum over all dimensions except the first
one for gi ◦ vi(Ii), where ◦ represents the element-wise
multiplication operator.

JT r leads to a tensor with the same dimensions as
the variable x. Therefore, we use a list of m tensors
{JT

1 r, ...,J
T
mr} to represent it. To compute JT

i r, we first
expand r to r∗i which have the same dimension as gi does.
We compute gi ◦ r∗i and call “index add ” to compute the
reduced sum of gi ◦ r∗i through index Ii.

Combining these components with other basic tensor op-
erators, we implement an LM solver with a preconditioned
conjugate gradient linear solver in Pytorch. The linear
solver terminates if the relative error is smaller than 1e− 3
or the number of linear steps is larger than 150. Triggs cor-
rection [2] can be further integrated as a robust kernel in the
system.

References
[1] Sameer Agarwal, Keir Mierle, et al. Ceres solver. 2012. 1
[2] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and An-

drew W Fitzgibbon. Bundle adjustment—a modern synthesis.
In International workshop on vision algorithms, pages 298–
372. Springer, 1999. 2

[3] Kyle Wilson and Noah Snavely. Robust global translations
with 1dsfm. In European Conference on Computer Vision,
pages 61–75. Springer, 2014. 1

[4] Changchang Wu, Sameer Agarwal, Brian Curless, and
Steven M Seitz. Multicore bundle adjustment. In CVPR 2011,
pages 3057–3064. IEEE, 2011. 1

[5] Lei Zhou, Zixin Luo, Mingmin Zhen, Tianwei Shen, Shiwei
Li, Zhuofei Huang, Tian Fang, and Long Quan. Stochastic
bundle adjustment for efficient and scalable 3d reconstruction.
arXiv preprint arXiv:2008.00446, 2020. 1

2


