Supplementary Material for
“Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging”

Tao Huang!  Weisheng Dong'*

thuang_666@stu.xidian.edu.cn

jinjian.wu@mail.xidian.edu.cn

In this supplementary material, we provide the RGB im-
ages of the testing scenes, more visualization results of the
regularization parameters w and more visual comparison
results on both synthetic data and real data.

The benchmark methods in our comparison include:
three model-based hyperspectral image (HSI) reconstruc-
tion methods (i.e., TWIST [1], GAP-TV [&] and DeSCI [2])
and four deep learning based methods (i.e., A-net [4],
HSSP [5], DNU [6] and TSA-Net [3]). The peak-signal-
to-noise (PSNR) and the structural similarity index (SSIM)
[7] are employed to evaluate the performance of competing
HSI reconstruction methods.

1. RGB images of the testing scenes and the
regularization parameters w

Fig. 1 shows the RGB images of the 10 scenes and its
corresponding regularization parameters w which were es-
timated in the fourth stage. From Fig. 1, we can see that the
values of w are consistent with the image edges and tex-
tures. Aided by this well-learned w, the proposed method
will pay more attentions to the edges and textures.

2. More visual comparison results on synthetic
data

Fig. 2-11 show more visual comparison results of the
best five competing methods with 28 spectral channels for
10 testing scenes. Ground truth, measurements, and RG-
B images are shown for reference. We compare the pro-
posed methods with TSA-Net [3], DNU [6], HSSP [5] and
A-net [4]. From Fig. 2-11, it can be observed the proposed
method can achieve high reconstruction quality and recover
more details of the textures and edges than the other com-
peting methods.
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3. More visual comparison results on real data

Fig. 12-16 show more visual comparison results with 28
spectral channels for the 5 real scenes. We compare the pro-
posed methods with TSA-Net [3], DeSCI [2], GAP-TV [8]
and TwIST [1]. From Fig. 12-16, we can see that the pro-
posed method can better suppress undesirable visual arti-
facts and recover more details of the textures and fine struc-
tures.
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Figure 1. The RGB images of the 10 scenes and the visualization of the regularization parameters w estimated in the 4-th stage. Left: the
corresponding RGB image; right: the w images associated with the four spectral bands (with normalization).



RGB Image

Measurement
Truth
(PSNR,SSIM)

Ours
(33.26, 0.9152)

TSA-Net
(32.03, 0.8920)

DNU
(31.72,0.8634)

HSSP
(31.48, 0.8577)

A-net
(30.10, 0.8492)

Figure 2. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method (PSNR = 33.26dB, SSIM
=0.9152), TSA-Net [3] (PSNR = 32.03dB, SSIM = 0.8920), DNU [6] (PSNR = 31.72dB, SSIM = 0.8634), HSSP [5] (PSNR = 31.48dB,
SSIM = 0.8577) and A-net [4] (PSNR = 30.10dB, SSIM = 0.8492) for Scenel. Zoom in for better view.
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Figure 3. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method (PSNR = 32.09dB, SSIM
=0.8977), TSA-Net [3] (PSNR = 31.00dB, SSIM = 0.8583), DNU [6] (PSNR = 31.13dB, SSIM = 0.8464), HSSP [5] (PSNR = 31.09dB,
SSIM = 0.8422) and A-net [4] (PSNR = 28.49dB, SSIM = 0.8054) for Scene2. Zoom in for better view.
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Figure 4. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method (PSNR = 33.06dB, SSIM
=0.9251), TSA-Net [3] (PSNR = 32.25dB, SSIM = 0.9145), DNU [6] (PSNR = 29.99dB, SSIM = 0.8447), HSSP [5] (PSNR = 28.96dB,
SSIM = 0.8231) and A-net [4] (PSNR = 27.73dB, SSIM = 0.8696) for Scene3. Zoom in for better view.




=4 ..........
Ours
(40.54, 0.9636)
TSA-Net
(39.19, 0.9528)
DNU
(35.34, 0.9084)
HSSP
(34.56,0.9018)
A-net
(37.01, 0.9338)

Figure 5. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method (PSNR = 40.54dB, SSIM
=0.9636), TSA-Net [3] (PSNR = 39.19dB, SSIM = 0.9528), DNU [6] (PSNR = 35.34dB, SSIM = 0.9084), HSSP [5] (PSNR = 34.56dB,
SSIM =0.9018) and A-net [4] (PSNR = 37.01dB, SSIM = 0.9338) for Scene4. Zoom in for better view.
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Figure 6. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method (PSNR = 28.86dB, SSIM
= 0.8820), TSA-Net [3] (PSNR = 29.39dB, SSIM = 0.8835), DNU [6] (PSNR = 29.03dB, SSIM = 0.8326), HSSP [5] (PSNR = 28.53dB,
SSIM = 0.8084) and A-net [4] (PSNR = 26.19dB, SSIM = 0.8166) for SceneS5. Zoom in for better view.
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Figure 7. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method (PSNR = 33.08dB, SSIM
=0.9372), TSA-Net [3] (PSNR = 31.44dB, SSIM = 0.9076), DNU [6] (PSNR = 30.87dB, SSIM = 0.8868), HSSP [5] (PSNR = 30.83dB,
SSIM = 0.8766) and A-net [4] (PSNR = 28.64dB, SSIM = 0.8527) for Scene6. Zoom in for better view.
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Figure 8. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method (PSNR = 30.74dB, SSIM
=0.8860), TSA-Net [3] (PSNR = 30.32dB, SSIM = 0.8782), DNU [6] (PSNR = 28.99dB, SSIM = 0.8386), HSSP [5] (PSNR = 28.71dB,
SSIM = 0.8236) and A-net [4] (PSNR = 26.47dB, SSIM = 0.8062) for Scene7. Zoom in for better view.
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Figure 9. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method (PSNR = 31.55dB, SSIM
=0.9234), TSA-Net [3] (PSNR = 29.35dB, SSIM = 0.8884), DNU [6] (PSNR = 30.13dB, SSIM = 0.8845), HSSP [5] (PSNR = 30.09dB,
SSIM = 0.8811) and A-net [4] (PSNR = 26.09dB, SSIM = 0.8307) for Scene8. Zoom in for better view.
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Figure 10. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method (PSNR = 31.66dB, SSIM
=0.9110), TSA-Net [3] (PSNR = 30.01dB, SSIM = 0.8901), DNU [6] (PSNR = 31.03dB, SSIM = 0.8760), HSSP [5] (PSNR = 30.43dB,
SSIM = 0.8676) and A-net [4] (PSNR = 27.50dB, SSIM = 0.8258) for Scene9. Zoom in for better view.
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Figure 11. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method (PSNR = 31.44dB, SSIM
=0.9247), TSA-Net [3] (PSNR = 29.59dB, SSIM = 0.8740), DNU [6] (PSNR = 29.14dB, SSIM = 0.8494), HSSP [5] (PSNR = 28.78dB,
SSIM = 0.8416) and A-net [4] (PSNR = 27.13dB, SSIM = 0.8163) for Scenel0. Zoom in for better view.
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Figure 12. Real data: RGB image, measurement and reconstructed results by the proposed method, TSA-Net [3], DeSCI [2], GAP-TV [§]
and TwIST [1] for Scenel. Zoom in for better view.
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Figure 13. Real data: RGB image, measurement and reconstructed results by the proposed method, TSA-Net [3], DeSCI [2], GAP-TV [§]
and TWIST [ 1] for Scene2. Zoom in for better view.
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Figure 14. Real data: RGB image, measurement and reconstructed results by the proposed method, TSA-Net [3], DeSCI [2], GAP-TV [§&]
and TwWIST [1] for Scene3. Zoom in for better view.
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Figure 15. Real data: RGB image, measurement and reconstructed results by the proposed method, TSA-Net [3], DeSCI [2], GAP-TV [§]
and TwWIST [ 1] for Scene4. Zoom in for better view.
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Figure 16. Real data: RGB image, measurement and reconstructed results by the proposed method, TSA-Net [
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and TwIST [ 1] for Scene5. Zoom in for better view.
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