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Algorithm 1 The forward pass of group whitening.
1: Input: a input sample x 2 Rd.
2: Hyperparameters: ✏, group number g.
3: Output: x̂ 2 Rd.
4: Group division: XG = ⇧(x; g) 2 Rg⇥c.
5: µ = 1

cXG1.
6: XC = XG � µ1T .
7: ⌃ = 1

cXCX
T
C + ✏I.

8: Calculate whitening matrix: ⌃� 1
2 =  f (⌃).

9: bXG = ⌃� 1
2XC .

10: Inverse group division: x̂ = ⇧�1(bXG) 2 Rd.

Algorithm 2 The corresponding backward pass of Algorith-
m 1.

1: Input: gradient of a sample: @L
@x̂ 2 Rd, and auxiliary data

from respective forward pass: (1) XC ; (2) ⌃� 1
2 .

2: Output: gradient with respect to the input: @L
@x 2 Rd.

3: Group division: @L
@ bXG

= ⇧( @L@x̂ ; g) 2 Rg⇥c.

4: @L

@⌃
� 1

2
= @L

@ bXG
XT

C .

5: Calculate gradient with respect to the covariance matrix: @L
@⌃ =

 b( @L

@⌃
� 1

2
).

6: f = 1
c

@L
@ bXG

1.

7: @L
@XG

= ⌃� 1
2 ( @L

@ bXG
� f1T ) + 1

c (
@L
@⌃ + @L

@⌃

T
)XC .

8: Inverse group division: @L
@x = ⇧�1( @L

@XG
) 2 Rd.

1. Algorithms
The forward pass of the proposed group whitening (G-

W) method is shown in Algorithm 1, and its corresponding
backward pass is shown in Algorithm 2.1 Note that we
need to specify the method for calculating the whitening
matrix ⌃� 1

2 
f (⌃) in Line 8 of Algorithm 1, as well as its

backward operation @L
@⌃ =  

b( @L
@⌃� 1

2
) shown in Line 5 of

Algorithm 2. As stated in the submitted paper, we use zero-
1For GW, we also use the extra learnable dimension-wise scale and shift

parameters, like BN [6]. We omit this in the algorithms for simplicity.

phase component analysis (ZCA) whitening and its efficient
approximation by Newton’s iteration (‘ItN’) [5]. Here, we
provide the details.

ZCA whitening. ZCA whitening [3] calculates the whiten-
ing matrix by eigen decomposition as: ⌃� 1

2 =  
f

ZCA
(⌃) =

D⇤� 1
2DT , where ⇤ = diag(�1, . . . ,�d) and D =

[d1, ...,dd] are the eigenvalues and associated eigenvectors
of ⌃, i.e.⌃ = D⇤DT .

The corresponding backward operation @L
@⌃ =

 
b

ZCA
( @L
@⌃� 1

2
) is as follows:

@L
@⇤

= DT (
@L
@⌃� 1

2

)D(�1

2
⇤�3/2) (1)

@L
@D

= (
@L
@⌃� 1

2

+ (
@L
@⌃� 1

2

)T )D⇤�1/2 (2)

@L
@⌃

= D{(KT � (DT
@L
@D

)) + (
@L
@⇤

)diag}DT
, (3)

where (@L
@⇤ )diag sets the off-diagonal elements of @L

@⇤ as zero.

‘ItN’ whitening. ‘ItN’ whitening [5] calculates the whiten-
ing matrix by Newton’s iteration as: ⌃� 1

2 =  
f

ItN
(⌃) =

PTp
tr(⌃d)

, where tr(⌃d) indicates the trace of ⌃d and PT is

calculated iteratively as:
(
P0 = I

Pk = 1
2 (3Pk�1 �P3

k�1⌃
N
d ), k = 1, 2, ..., T.

(4)

Here, ⌃N

d
= ⌃d/tr(⌃d).

The corresponding backward operation @L
@⌃ =

1



 

def GroupWhitening (X, gamma, beta, g, T=5, eps=1e-5): 
   # X input feature with size [m, d] or [m, d, H, W] 
   # gamma, beta: the learnable affine   
   # g: the group number of group whitening 
   # T: Whe iWeraWion nXmber of NeZWon¶V iWeraWion   

size = X.size() 
X_G = X.view( size[0], g, -1)   # group division 

   m, g, c = X_G.size() 
   # centering  
   mean = X_G.mean( -1, keepdim = True) 
   X_G _mean = X_G ± mean 
   # approximate ZCA ZhiWening b\ NeZWon¶V iWeraWion 
   P = [ torch.Tensor([]) for _ in range(T+1) ] 
   sigma = x_mean.matmul( X_G _mean.transpose(1, 2)) / c 
   P[0] = torch.eye(d).to(x).expand(sigma.shape) 
   M_zero = sigma.clone().fill_(0) 
   trace_inv = torch.addcmul(M_zero, sigma, P[0] ).sum( (1, 2), keepdim= True).reciprocal_() 
   sigma_N=torch.addcmul( M_zero, sigma, trace_inv ) 
   for k in range(T): 
       P[k+1] = torch.baddbmm( 1.5, P[k], -0.5, torch.matrix_power(P[k], 3), sigma_N) 
   wm = torch.addcmul( M_zero, P[T], trace_inv.sqrt()) 
   y = wm.matmul( X_G _mean ) 

output = y.view_as(X) # inverse group division 
   return output * gamma + beta 

Figure 1. Python code of GW using ItN whitening, based on PyTorch.
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@⌃� 1

2
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@L
@PT
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tr(⌃)
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@⌃N
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TX
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(P3
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)TPT )I. (5)

Here, @L
@Pk

can be calculated by the following iterations:

@L
@Pk�1

=
3
2
@L
@Pk

� 1
2
@L
@Pk

(P2
k�1⌃N )T � 1

2
(P2

k�1)
T @L
@Pk

⌃T
N

� 1
2
(Pk�1)

T @L
@Pk

(Pk�1⌃N )T , k = T, ..., 1. (6)

We also provide the python code of GW using ItN whitening,
based on PyTorch [9], in Figure 1.

2. More Results on Effects of Batch Size and
Group Number

In Figure 1 of the submitted paper, we show the effects
of batch size (group number) for batch (group) normalized
networks, where the results are obtained with a learning rate

of 0.1. Here, we provide more results using different learning
rates, shown in Figure 2. We obtain similar observations.

3. More Results on Conditioning Analysis

In Figure 2 of the submitted paper, we perform a condi-
tioning analysis on the normalized output, where we report
90% and use a one-layer and two-layer multilayer percep-
tron (MLP) as f(·) to obtain the activations. Here, we pro-
vide more results, shown in Figure 3. We obtain similar
observations.

4. Derivation of Constraint Number of Normal-
ization Methods

In Section 4 of the submitted paper, we define the con-
straint number of a normalization operation, and summarize
the constraint number of different normalization methods in
Table 1 of the submitted paper. Here, we provide the details
for deriving the constraint number of batch whitening (BW),
group normalization (GN) [11] and our proposed GW, for
the mini-batch input X 2 Rd⇥m.

Constraint number of BW. BW [3] ensures that the nor-
malized output is centered and whitened, which has the
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Figure 2. Effects of batch size (group number) for batch (group) normalized networks. The experimental setup is the same as the one in
Figure 1 of the submitted paper. (a) Effect of batch size using a learning rate of 0.01; (b) Effect of batch size using a learning rate of 0.5; (c)
Effect of group number using a learning rate of 0.01; (d) Effect of group number using a learning rate of 0.05;
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Figure 3. Conditioning analysis on the normalized output. We simulate the activations X = f(X0) 2 R256⇥1024 using a network f(·),
where X0 is sampled from a Gaussian distribution. We evaluate the more general condition number with respect to the percentage:
p = �max

�p
, where �p is the pd-th eigenvalue (in descending order) and d is the total number of eigenvalues. We show the 90% of the

covariance matrix of the output in (a)(b)(c)(d), and the 80% of the covariance matrix of the output in (e)(f)(g)(h). We use a one-layer MLP
as f(·) in (a)/(e); a two-layer MLP in (b)/(f); a three-layer MLP in (c)/(g); and a four-layer MLP in (d)/(h).

constraints ⌥�BW (bX) as:

bX1 = 0d, and (7)
bXbXT �mI = 0d⇥d, (8)

where 0d is a d-dimensional column vector of all zeros, and
0d⇥d is a d ⇥ d matrix of all zeros. Note that there are d

independent equations in the system of equations bX1 = 0d.
Let’s denote M = bXbXT�mI. We have MT = M, and thus
M is a symmetric matrix. Therefore, there are d(d+ 1)/2

independent equations in the system of equations bXbXT �
mI = 0d⇥d. We thus have d(d + 1)/2 + d independent
equations in ⌥�BW (bX), and the constraint number of BW
is d(d+ 3)/2.

Constraint number of GN. Given a sample x 2 Rd, GN
divides the neurons into groups: Z = ⇧(x) 2 Rg⇥c, where
g is the group number and d = gc. The standardization

operation is then performed on Z as:
bZ = ⇤

� 1
2

g (Z� µg1
T ), (9)

where, µg = 1
c
Z1 and ⇤g = diag(�2

1 , . . . ,�
2
g
) + ✏I . This

ensures that the normalized output bZ for each sample has
the constraints:

cX

j=1

bZij = 0 and
cX

j=1

bZ2
ij
= c, for i = 1, ..., g. (10)

In the system of equations 10, the number of independent
equations is 2g. Therefore, the constraint number of GN is
2dm, when given m samples.
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Figure 4. Effects of group number for GN on CNNs for CIFAR-10
classification. We vary the group number of GN, and evaluate the
difference in training accuracy between GN and the model without
normalization (‘Base’).

Constraint number of GW. Given a sample x 2 Rd, GW
performs normalization as:

Group division : XG = ⇧(x; g) 2 Rg⇥c
, (11)

Whitening : bXG = ⌃
� 1

2
g (XG � µg1

T ), (12)

Inverse group division : x̂ = ⇧�1(bXG) 2 Rd
. (13)

The normalization operation ensures that bXG 2 Rg⇥c has
the following constraints:

bXG1 = 0, and (14)
bXG

bXT

G
� cI = 0. (15)

Following the analysis for BW, the number of independent
equations is g(g + 3)/2 from Eqns. 14 and 15. Therefore,
the constraint number of GW is mg(g + 3)/2, when given
m samples.

5. Investigating Representational Capacity on
CNNs

In Section 4.2 of the submitted paper, we empirically
show how normalization affects the representational capacity
of a network with experiments conducted on MLPs. Here,
we conduct experiments on convolutional neural networks
(CNNs) for CIFAR-10 classification. Note that the number
of neurons to be normalized for GN is dHW , given the
convolutional input X 2 Rd⇥m⇥H⇥W , where H and W are
the height and width of the feature maps. The number of
samples to be normalized for BN is mHW . We use a CNN
with n convolutional layers, following average pooling and
one fully connected layer. We use d = 16 channels in each
layer and vary the depth n. We apply stochastic gradient
descent (SGD) with a momentum of 0.9. We train over 160
epochs and divide the learning rate by 5 at 60 and 120 epochs.
We evaluate the best training accuracy among the learning
rates of {0.001, 0.01, 0.05, 0.1, 0.5}.

Figure 4 shows the results of GN with varying group
number (we use a batch size of 256), where we report the
difference in training accuracy between GN and the model

Figure 5. Effects of batch size for BN on CNNs for CIFAR-10
classification. We vary the batch size of BN, and evaluate the
difference in training accuracy between BN and ‘Base’.

without normalization (‘Base’). We observe that: 1) GN
has significantly degenerated performance when the group
number is too large (relative to the channel number), e.g.,
GN has worse performance than ‘Base’ when g = d =
16; 2) The net gain of GN over ‘Base’ is amplified as the
depth increases. These observations are consistent with
the experiments on the MLPs shown in Section 4.2 of the
submitted paper.

Figure 5 gives the results of BN with varying batch size,
wher we report the difference in accuracy between BN and
‘Base’. We observe that: 1) BN has significantly degenerated
performance when the batch size is too small, e.g., BN has
worse performance than ‘Base’ when m = 2 or m = 4; 2)
The net gain of BN over ‘Base’ is amplified as the depth
increases. These observations suggest that there is also a
trade-off for BN between the benefits of normalization on
optimization and its constraints on representation.

6. More Experimental Results on ImageNet
6.1. Learning Decorrelated Feature Representa-

tions
As described in Section 5.1.1 of the submitted paper, we

investigate the effect of inserting a GW/BW layer after the
last average pooling (before the last linear layer) to learn the
decorrelated feature representations, as proposed in [5]. We
provide the results in Table 1. This can slightly improve the
performance (0.10% on average) when using GW (compar-
ing Table 1 to Table 2 of the submitted paper). We note that
BW⌃ benefits the most from this kind of architecture.

6.2. Running Time Comparison
In this section, we compare the wall-clock time of the

models described in Section 5.1 of the submitted paper. We
run the experiments on GPUs (NVIDIA Tesla V100). All
implementations are based on the API provided by PyTorch,
with CUDA (version number: 9.0). We use the same exper-
imental setup as described in Section 5.1 of the submitted
paper. We evaluate the training time for each iteration, av-
eraged over 100 iterations. The ResNets-50 baseline (BN)
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S1 S1-B1 S1-B2 S1-B3 S1-B12
Baseline (BN) 76.24 76.24 76.24 76.24 76.24

BW [5] 76.91 ("0.67) 76.94 ("0.70) 76.93 ("0.69) 76.78 ("0.54) 76.79 ("0.55)
BW⌃ [4] 77.09 ("0.85) 77.04 ("0.80) 77.21 ("0.97) 77.10 ("0.86) 77.11 ("0.87)

GW 76.86 ("0.62) 77.63 ("1.39) 77.80 ("1.56) 77.75 ("1.51) 77.48 ("1.24)

Table 1. Effects of inserting a GW/BW/BW⌃ layer after the last average pooling of ResNet-50 to learn decorrelated feature representations for
ImageNet classification. We evaluate the top-1 validation accuracy on five architectures (S1, S1-B1, S1-B2, S1-B3 and S1-B12), described
in the submitted paper. Note that we also use an extra BN layer after the last average pooling for the Baseline (BN).

S1 S1-B1 S1-B2 S1-B3 S1-B12
Baseline (BN) 419 419 419 419 419

GW 437 (�4.3%) 518 (�23.6%) 514 (�22.7%) 634 (�51.3%) 589 (�40.6%)

Table 2. Time costs (ms) of five architectures when applying GW on ResNet-50 (S1, S1-B1, S1-B2, S1-B3 and S1-B12). Note that � x%
indicates the additional time cost is x%, compared to the baseline.

costs 419 ms. Replacing the BNs of ResNet-50 with our
GWs (g=64) costs 796 ms, a 90% additional time cost on
ResNet-50. This is one factor that drives us to investigate
the position at which to apply GW.

Table 2 shows the time costs of five architectures, S1,
S1-B1, S1-B2, S1-B3 and S1-B12, which have 1, 17, 17, 17
and 33 GW modules, respectively. Note that applying GW
in the S1-B3 architecture results in a clearly increased com-
putational cost, compared to S1-B1/S1-B2. This is because
the channel number of the third normalization layer is 4⇥
larger than that of the first/second normalization layer, in the
bottleneck blocks [1].

Table 3 shows the time costs of ResNets [1] and
ResNeXts [12] (the corresponding models in Table 3 of
the submitted paper) for ImageNet classification.

6.3. Results on Advanced Training Strategies
In Section 5.1 of the submitted paper, we show the ef-

fectiveness of our GW on ResNets [1] and ResNeXts [12],
under the standard training strategy (e.g., using learning rate
step decay). Here, we also conduct experiments using more
advanced training strategies: 1) We train over 100 epochs
with cosine learning rate decay [7]; 2) We add the label
smoothing tricks with a smoothing constant " = 0.1 [2];
3) We use mixup training with ↵ = 0.2 in the Beta distri-
bution [13]. The results are shown in Table 4, where GW
improves the baselines consistently.

7. Additional Experiments on Neural Machine
Translation

Our GW does indeed generalize layer normalization (LN),
which is a widely used technique in NLP tasks. We thus
believe our GW has the potential to improve the performance
of LN in NLP tasks. We conduct additional experiments
to apply our GW on Transformer [10] (where LN is the
default normalization) for machine translation tasks using
fairseq-py [8]. We evaluate on the public IWSLT14 German-

Method ResNet-50 ResNeXt-50
Baseline (BN) [6] 77.16 78.84

GN [11] 76.09 (#1.07) 76.90 (#1.94)
BW⌃ [4] 78.29 ("1.13) 79.55 ("0.71)

GW 78.46 ("1.30) 80.07 ("1.23)

Table 4. Comparison of validation accuracy on 50-layer ResNet [1]
and ResNeXt [12] for ImageNet on more advanced training strate-
gies (e.g., cosine learning rate decay [7], label smoothing [2] and
mixup [13]). Note that we use an additional layer for BW⌃ to learn
the decorrelated feature, as recommended in [4].

to-English (De-EN) dataset using BLEU (higher is better).
We use the hyper-parameters recommended in fairseq-py [8]
for Transformer and train over 50 epochs with five random
seeds. The baseline LN has a BLEU score of 35.02± 0.09.
GW (replacing all the LNs with GWs) has a BLEU score of
35.27± 0.06. Note that the hyperparameters were designed
for LN, and may not be optimal for GW.
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