
Memory Oriented Transfer Learning for Semi-Supervised Image Deraining

A. Network Architecture

Table 1: Network architecture for the MOSS encoder.

Encoder Settings Input Output
Conv 3× 3, 16 x s(x)

ResBlock

 1× 1, 32
3× 3, 32
3× 3, 32

× 1 s(x) f01(x)

AvgPool 2 f01(x) p0(x)

ResBlock
[

3× 3, 32
3× 3, 32

]
× 3 p0(x) f0(x)

ResBlock

 1× 1, 48
3× 3, 48
3× 3, 48

× 1 f0(x) f11(x)

AvgPool 2 f11(x) p1(x)

ResBlock
[

3× 3, 48
3× 3, 48

]
× 3 p1(x) f1(x)

ResBlock

 1× 1, 64
3× 3, 64
3× 3, 64

× 1 f1(x) f21(x)

AvgPool 2 f21(x) p2(x)

ResBlock
[

3× 3, 64
3× 3, 64

]
× 3 p2(x) f2(x)

ResBlock

 1× 1, 80
3× 3, 80
3× 3, 80

× 1 f2(x) f31(x)

ResBlock
[

3× 3, 80
3× 3, 80

]
× 3 f31(x) f3(x)

ResBlock

 1× 1, 96
3× 3, 96
3× 3, 96

× 1 f3(x) f41(x)

ResBlock
[

3× 3, 96
3× 3, 96

]
× 3 f41(x) z(x)

Table 1 and Table 2 are the network architectures of the
encoder and decoder of the proposed network, respectively.
We use residual blocks as the basic component of our net-
work and illustrate its design details in Fig. 1. We employ
average pooling to reduce the size of features in the encoder,
and up-sampling by bilinear interpolation to recover the size
of features in the decoder. Besides, following BigGAN [1],

Table 2: Network architecture for the MOSS decoder.

Decoder Settings Input Output

ResBlock

 1× 1, 80
3× 3, 80
3× 3, 80

× 1 ẑ(x) g01(x)

ResBlock
[

3× 3, 80
3× 3, 80

]
× 3 g01(x) g0(x)

CBN - f3(x), g0(x) c1(x)

ResBlock

 1× 1, 64
3× 3, 64
3× 3, 64

× 1 c1(x) g11(x)

ResBlock
[

3× 3, 64
3× 3, 64

]
× 3 g11(x) g1(x)

CBN - f2(x), g1(x) c2(x)

Upsample 2 c2(x) u2(x)

ResBlock

 1× 1, 48
3× 3, 48
3× 3, 48

× 1 u2(x) g21(x)

ResBlock
[

3× 3, 48
3× 3, 48

]
× 3 g21(x) g2(x)

CBN - f1(x), g2(x) c3(x)

Upsample 2 c3(x) u3(x)

ResBlock

 1× 1, 32
3× 3, 32
3× 3, 32

× 1 u3(x) g31(x)

ResBlock
[

3× 3, 32
3× 3, 32

]
× 3 g31(x) g3(x)

CBN - f0(x), g3(x) c4(x)

Upsample 2 c4(x) u4(x)

ResBlock

 1× 1, 16
3× 3, 16
3× 3, 16

× 1 u4(x) g41(x)

ResBlock
[

3× 3, 16
3× 3, 16

]
× 3 g41(x) g(x)

Sub - s(x), g(x) g(x)

Conv 3× 3, 3 g(x) g(x)

Tanh - g(x) y

we utilize Conditional Batch Normalization (CBN) to fuse
the features gj(x) of the decoder with the corresponding
features fij (x) of the encoder, where fij (x) and gj(x) are
considered as the input and condition, respectively.

For the memory M , we set the number of memory items
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Figure 1: Illustration of the basic residual block. The dash
line denotes that the convolution layer of 1 × 1 kernel-size
is used only when the channel number of the input does not
equal to that of the output.

as 512, and the dimension of each memory item as 96, just
the same with the encoding z(x) and the memory-based
representation ẑ(x).

B. Training Algorithm
We firstly pre-train the online network fθ on labeled data

using Algorithm 1 for the first 10 epochs. Then we train
the proposed MOSS on both labeled and unlabeled data for
semi-supervised deraining using Algorithm 2.

Algorithm 1 Pre-training MOSS for supervised deraining

1: θ ← Randomly initialize online network fθ
2: while not converged do
3: (XL, YL)← Random batch from labeled dataset
4: ZL ← Enc(XL)
5: M ← Self-supervised updating via Eq. (3)
6: ẐL ← Soft-attentive reading via Eq. (5)
7: ỸL ← Dec(ẐL, XL)
8: LSU ← LSU (ỸL, YL)
9: θ ← θ − η ∇θLSU . Perform Adam updates for θ

10: end while

C. User Study
We conduct a user study to compare the performance of

the proposed method with PreNet [3], DRD [2], SIRR [4]
and Syn2Real [5]. All the methods are trained on the DDN-
SIRR train set [4]. In the following, we first describe the
real-world test set and evaluation details, and then report
the results with an analysis.

Dataset and evaluation details. We collect 48 real-
world rainy images searched from the internet as the real-
world test set, ensuring that they have not been contained in
the train set. A user-study database is built by performing
rain removal on the test images using the above methods,
leading to 48 groups of 6 images, each of which contains

Algorithm 2 Training MOSS for semi-supervised deraining

1: θ ← Pre-trained weights of the online network
2: ξ ← θ . Perform deepcopy for the target network
3: while not converged do
4: (XL, YL)← Random batch from labeled dataset
5: XU ← Random batch from unlabeled dataset
6: YP ← fξ(XU ) . Produce pseudo-labels
7: (XN , Ŷ )← Augment(XL, YL, XU , YP ) .

Produce noisy data
8: ZL ← Enc(XL)
9: M ← Self-supervised updating via Eq. (3)

10: ẐL ← Soft-attentive reading via Eq. (5)
11: ỸL ← Dec(ẐL, XL)
12: ZN ← Enc(XN )
13: M ← Self-supervised updates via Eq. (3)
14: ẐN ← Soft-attentive reading via Eq. (5)
15: ỸN ← Dec(ẐN , XN )
16: Ltotal ← λ1LSU (ỸL, YL) + λ2LUN (ỸN , Ŷ ) +

λ3LTV (ỸN )
17: θ ← θ− η ∇θLtotal . Perform Adam updates for θ
18: ξ ← υ ξ + (1− υ) θ . Perform updates for ξ
19: end while

an original rainy image and 5 results of different methods.
Given a group of images, we let the users select the best one
in deraining performance. Specifically, we randomly sam-
ple 10 groups from the database and show them to an indi-
vidual user. For fairness, we shuffle the orders of images
in each group and make the methods anonymous, except
for the original one fixed as reference. Note that we do not
collect the privacy of the evaluators and all questionnaires
are anonymous. We distribute the questionnaire to a wide
range of online users without constraints, and finally obtain
answers from a total of 404 human evaluators. The database
and the original data of the questionnaire will be released.

Averaged selection percentage. Fig. 2 shows the aver-
aged selection percentage for each method. As can be ob-
served, our method achieves the best performance for real-
world rain removal. Besides, our method and Syn2Real
outperforms other methods with a large margin, which is
consistent with the comparison results in the main text.

The visual results, including the selection percentages
for individual images, are illustrated in Fig. 4, which further
demonstrate that our method can obtain promising derain-
ing results for real-world rainy images. Additionally, we
provide one failure case in the rightmost column in Fig. 4.
The rainy image of a running man with a dog is heavily
damaged by rain of complex patterns. Even though, our
method can recover cleaner background scene than other
methods, according to most of human evaluators.

Rank-n scores. Furthermore, we compute the rank-n
scores to gain an insight of deraining robustness. For each
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Figure 2: Averaged selection percentage of user study.

1 2 3 4 5 6

MOSS 39.58% 77.08% 89.58% 93.75% 100.00% 100.00%

Syn2Real 35.42% 52.08% 75.00% 85.42% 97.92% 100.00%

SIRR 10.42% 20.83% 37.50% 66.67% 91.67% 100.00%

DRD 6.25% 29.17% 56.25% 81.25% 93.75% 100.00%

PreNet 8.33% 18.75% 39.58% 60.42% 87.50% 100.00%

Original 0.00% 2.08% 2.08% 12.50% 29.17% 100.00%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
ER

C
EN

TA
G

E 
(%

)

Rank Score

Figure 3: Rank-n scores of user study.

method, we calculate the percentage of images whose top-
k selections contain it. The rank-n score Rni for the i-th
method is defined as

Rni =
1

N

N∑
j=1

1(i ∈ Ftopk(xj , n)), (1)

where xj is the j-th image from the test database of N im-
ages (here N = 48), Ftopk is the operation of top-k.

The rank-n scores are reported in Fig. 3. It can observed
that our method consistently surpasses other methods. For
example, 77.08% and 89.58% percentages of the recovered
images by our method are considered as the top-2 and top-3
pleasing results, respectively. This demonstrates that the
proposed method can achieve stronger robustness toward
real-world image deraining compared with other state-of-
the-art methods.

D. Ablation Study
As aforementioned in the main text, an ablation study is

conducted and prove that each component of the proposed
method is essential for semi-supervised deraining. In this

section, we give a more detailed discussion about the roles
of these components. For convenience, we report again the
results of the ablation study in Table 3. Furthermore, we
give a detailed discussion about the decay rates τ in Eq. (3)
and υ in Eq. (7).

Table 3: Results of ablation study on DDN-SIRR.

Dataset Metrics Basic
w/o

Memory
w/o

Self-Training
w/o
TV

w/o
Skip-Connect Ours

Dense PSNR 19.99 22.21 20.99 22.68 22.00 22.91
SSIM 0.835 0.870 0.860 0.876 0.858 0.883

Sparse PSNR 25.74 26.82 25.83 27.58 26.80 27.78
SSIM 0.881 0.906 0.890 0.908 0.900 0.912

Memory. The proposed memory aims to record proto-
typical patterns of rain degradations. As shown in Table 3,
the performance decreases both for images of dense rain
streaks and those of sparse rain streaks when removing the
memory module from the proposed method. It proves that
the memory module is helpful to improve deraining perfor-
mance for various rain appearances.

Self-Training. The proposed self-training not only pro-
vides a way to transfer knowledge from supervised to un-
supervised deraining, but also augments training data with
more types of rain degradations. Table 3 shows that remov-
ing self-training results in heavy degradations in deraining
performance. This implies that the proposed self-training is
essential for our method, since it offers a strong supervision
for unlabeled data and improves the deraining robustness
through data augmentation.

Total Variation. The Total Variation regularizer term
helps slightly smooth the deraining results of augmented
noisy data. When removing it, there is a slight decrease
in performance of deraining. The TV term is helpful for
deraining, since it offers an additional unsupervised prior-
based constraint on the deraining process of unlabeled data.

Skip Connection. As outlined in the network architec-
tures of MOEDN, we employ a skip-connection between
the first and the last convolution layers. It ensures that the
major parts of MOEDN should focus on learning rain degra-
dations rather than irrelevant background details. There-
fore, the memory module can record only the rain-relevant
features, which eases the memory task since rain degrada-
tions may have much less diversities than the background
information. Table 3 empirically demonstrates that it is
plausible to design such a skip connection.

Decay Rate τ . The proposed memory M is updated in
a self-supervised way via Eq. (3). The key hyper-parameter
in Eq. (3) is the decay rate τ that controls the updating speed
of M . When τ = 0, M is instantaneously updated to the
second term in Eq. (3) at each step. When τ = 1, M is con-
stant without updating. We conduct experiments on DDN-
SIRR with different values of the decay rate τ and report
averaged PSNR and SSIM on the DDN-SIRR synthetic test
set in table 4. As can be seen, there is a trade-off between

3



updating M quickly and updating M slowly. All values
between 0 and 0.9999 lead to better performance than the
ablation version without the memory module, which fur-
ther proves that the proposed memory is beneficial to im-
age deraining. Besides, utilizing a memory module with-
out updating (τ = 1), we obtain worse deraining results
even than the version without it. It is because the random-
initialized memory cannot reflect various statistics of rain
degradations. We set τ to be 0.999 in our full version of
MOSS since it achieves the best results of deraining.

Table 4: Results of different decay rates τ on DDN-SIRR.

Decay rate τ PSNR SSIM

0 25.06 0.876
0.9 25.24 0.896

0.99 25.01 0.894
0.999 25.35 0.898

0.9999 25.19 0.894
1 24.13 0.885

w/o 24.52 0.888

Decay Rate υ. As aforementioned, the self-training
mechanism plays a significant role in the proposed method
for semi-supervised deraining. The target network is up-
dated with an exponential moving average of the online net-
work by a decay rate υ. Similar to τ , when υ = 0, the
target network is instantaneously updated to the online net-
work; when υ = 1, the target network is fixed during train-
ing (note that the target network is initialized using the pre-
trained weights by Algorithm 1). We also conduct experi-
ments on DDN-SIRR with different values of the decay rate
υ and reports the results in Table 5. It can be observed all
values of υ can help improve deraining accuracy compared
to the ablation version without self-training. This further
implies that self-training is essential for the proposed semi-
supervised deraining method. Besides, directly using the
online network (υ = 0) to produce pseudo-labels can also
boost image deraining with a large margin. However, using
a pre-trained network (υ = 1) can only attain a marginal in-
crease compared to the ablation one. This demonstrates that
updating the target network according to the online network
is important for the proposed self-training. We set υ to be
0.999 to achieve a better trade-off between updating the tar-
get network quickly and updating it slowly.

E. Additional Visual Results
In this section, we provide additional visual results on

real-world rainy images and limited labeled data, as illus-
trated in Fig. 4, Fig. 5, Fig. 6, and Fig. 7. In addition, we
provide visual results of the noised data via Eq.(9) in the

Table 5: Results of different decay rates υ on DDN-SIRR.

Decay rate υ PSNR SSIM

0 25.17 0.887
0.9 24.93 0.890

0.99 25.28 0.892
0.999 25.35 0.898

0.9999 25.04 0.885
1 24.15 0.8884

w/o 23.41 0.875

main text in Fig. 8. It can be observed that the augmenta-
tion can yield various yet valid rain appearances.
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Figure 4: Visual results of the real-world rainy images for user study. The rightmost column shows a failure case for every
method. Though, our method still achieves the best deraining performance according to the user study.
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Figure 5: Visual results on the DDN-SIRR real-world test set.
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Input Rainy Images

Syn2Real [5] using only labeled data

Syn2Real [5] using both labeled and unlabeled data

MOSS using only labeled data

MOSS using both labeled and unlabeled data

Ground-Truth images

Figure 6: Visual results on the Rain200H dataset with 10% labeled data.
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Input Rainy Images

Syn2Real [5] using only labeled data

Syn2Real [5] using both labeled and unlabeled data

MOSS using only labeled data

MOSS using both labeled and unlabeled data

Ground-Truth images

Figure 7: Visual results on the Rain200H dataset with 40% labeled data.
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Figure 8: Example images of data augmentation.
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