
MetricOpt: Learning to Optimize Black-Box Evaluation Metrics
Supplementary Material

Chen Huang Shuangfei Zhai Pengsheng Guo Josh Susskind
Apple Inc.

{chen-huang,szhai,pengsheng guo,jsusskind}@apple.com

θ
Input layer

ϕ Adapter parameters(a)

(b)
ϕ

Adapter parameters

FiLM module i

+

θ

bi,cρi,chi,c h′ i,c

(a)

Sequentially fine-tuned
Random

Pre-trained
Meta-learned (default)

0 4 8 12 16 20

0.5

0.7

0.9

Iteration

Va
lu

e
fu

nc
tio

n
tra

in
 lo

ss

(b)

95.0

95.5

96.0

94.0

94.5A
U

C
PR

 (%
)

MetricOpt (SGD) MetricOpt (learned)

Sequentially
Fine-tuned

Meta-learned
(default)

Pre-trained

Figure 1. Adapter parameters φ that modulate the pre-trained net-
work weights θ. (a) For fully connected networks, φ are the dy-
namic biases concatenated at the input layer. (b) For convolutional
networks, φ are the input vectors of FiLM layers [7] that linearly
transform each feature map hi,c with scale ρi,c and shift bi,c pa-
rameters.

1. Adapter Module Visualization
For the parameter efficiency of model finetuing, we fol-

low [10] to use an adapter module to modulate the pre-
trained network weights θ. Specifically, we finetune a small
set of parameters φ of an adapter module. Fig. 1 illustrates
the adapter modules for both fully connected and convolu-
tional networks. We found the two types of adapter param-
eters achieve a good performance-efficiency tradeoff, and
use them to learn our value function throughout the paper.

2. MetricOpt with Jointly Learned Optimizer
In the main paper, we introduce a well-performing

MetricOpt that combines our learned value function with
hand-crafted optimizers SGD/Adam. Here we show it is
also possible to jointly learn the value function and the op-
timizer for better performance. Training signals come from
a given surrogate loss and the differentiable value function
learned on the fly (as a metric supervision). The main prod-

 Algorithm 1 Pseudocode of MetricOpt (with SGD/Adam)

 Input: Task distribution , hyper-parameters

 Input: Number of finetuning steps per task

 Input: Number of metric evaluations per task

 // Meta-training value function

 1: Initialize of value function

 2: for do
 3: Collect sparse evaluation metrics over

 the tuning sequence of SGD or Adam

 4: Obtain dense interpolation

 5: Update via Eq. (2)

 6: Update // Reptile update

 7: end for
 8: return

 // Meta-testing with Guided ES and value function

 9: Initialize for new task

10: for to do

// Loss signal
11: Update search covariance via Eq. (3)

12: Sample perturbations

// Metric signal from value function

13: Estimate descent direction using , see Eq. (4)

14: Update
15: end for
16: return

α, η, P, s2

T
K

wv fwv

{M(ϕk)}K
k=1

{ϕt}T
t=1

{(M̂t, ̂σt)}T
t=1

w̃v = wv − α∇wv
Lv(wv)

wv ← wv + η(w̃v − wv)

w̃v

ϕ0
t = 0 T − 1

Σ
P {δi}P

i=1 ∼ '(0,s2Σ)

ut fw̃v

ϕt+1 ← ϕt − αtut

ϕT

 Algorithm 1 Pseudocode of fully learned MetricOpt

 Input: Task distribution , hyper-parameters

 Input: Number of finetuning steps per task

 Input: Number of metric evaluations per task

 // Meta-training value function & optimizer

 1: Initialize weights of optimizer and value func

 2: for do

 3: Collect sparse evaluation metrics over

 the tuning sequence of learned optimizer

 4: Obtain dense interpolation

 5: Update // Value function

 6: Update using adapted by Eq. (3) // Optimizer

 7: Update // Reptile update

 8: end for
 9: return

 // Meta-testing with the learned optimizer
10: Initialize for new task

11: for to do
12: Update following Eq. (1)
13: end for
14: return

α, η
T

K

wopt fwv

{M(ϕk)}K
k=1

{ϕt}T
t=1

{(M̂t, ̂σt)}T
t=1

w̃v = wv − α∇wv
Lv(wv)

wopt fw̃v

wv ← wv + η(w̃v − wv)

wopt

ϕ0
t = 0 T − 1

ϕt+1 ← ϕt − αtut

ϕT

uct of such joint training is a neural network parameterized
optimizer. During meta-testing, only the learned optimizer
is used for a new finetuning task, while the learned value
function is dropped. Algorithm 1 shows the pseudocode of
a fully learned MetricOpt.

The current go-to method for optimizer parameteriza-
tion is to leverage an LSTM network [1, 9]. Unfortunately,
LSTM training suffers from either biased or exploding gra-
dients during truncated backpropagation through unrolled
optimization [6]. Here we use a simple MLP with weights
wopt as in [6]. The MLP-based optimizer mwopt

can pro-
duce the update direction ut and learning rate αt to recur-

rently update our adapter parameters φt:

φt+1 = φt + αtut,

[αt, ut] = mwopt
(∇t, ∇̄t, φt, `t,∆`t,Mt,∆Mt),

(1)

where optimizer inputs are the loss gradient∇t = ∇φ`(φt),
exponential running average ∇̄t, current parameters φt,
scale-normalized loss `t and metric Mt and their relative
changes ∆`t and ∆Mt from the respective moving aver-
ages.

As mentioned above, we train wopt with supervisions of
both metric Lmetric and loss Lloss:

Lopt(wopt) = λLmetric(wopt) + Lloss(wopt), (2)

Lmetric =
1

T

T∑
t=1

log

(
1 + exp

(
β(M̂t − M̂t′)

M̂t

))
,

M̂t = fwv (φt), t
′ = arg min

i<t
M̂i,

Lloss =
1

T

T∑
t=1

(log(`(φt) + ε)− log(`(φ0) + ε)) ,

where hyper-parameters λ = 50 and β = T/2, and the
small positive constant ε is introduced to avoid numerical
instability. Note M̂t is the metric prediction from our value
function fwv

. The Lmetric term encourages relative metric
improvements for the whole optimization sequence in a log-
arithmic form. On the other hand, the Lloss term evaluates
the average log loss (offset by the initial value). This term
encourages a low loss at convergence while still providing
loss training signals at every step.

One benefit of the multi-task objective Lopt is that it con-
tinues to penalize metric deterioration when minimizing the
loss at convergence. However, the objective surface of Lopt
can be extremely non-smooth [6], and we are likely to ob-
tain noisy derivatives through the unrolled optimization pro-
cess. Here, we follow [6] to train our optimizermwopt

using
a variational loss as a smoothed objective:

Ew̃opt∼N (wopt,ε2I) Lopt(w̃opt), (3)

where ε2 = 0.01 is a fixed variance. This smoothing helps
stabilize optimizer training. Actual training is based on
the two unbiased gradient estimators in [6], with the same
learning rate setting.

Computational complexity Our main paper confirms
the empirical advantages of jointly learning the value func-
tion and optimizer. The resulting MetricOpt (learned) out-
performs our default MetricOpt (SGD) approach when op-
timizing the image classification metrics MCR and AUCPR
on CIFAR-10 dataset. But it is worth noting that such per-
formance gains come at a larger meta-training cost. Specif-
ically, joint training needs more meta-iterations to converge
than meta-training the value function alone in our default

Table 1. Top-1 and Top-5 classification accuracies (%) on Ima-
geNet. All methods use the same NASNet-A network.

Method Top-1 Top-5
RMSProp + cross-entropy 73.5 91.5
MetricOpt (SGD) 74.9 92.7
MetricOpt (learned) 75.0 93.0

Train loss

(a)

Test AUCPR metric

MetricOpt

ALA

RaMBO

AUCPR loss

MetricOpt

ALA
RaMBO

AUCPR loss

Figure 2. Train loss and test metric surfaces (visualized by the tool-
box in [5]) for optimizing the AUCPR metric on CIFAR-10. We
compare the solutions obtained from the hand-designed AUCPR
loss [3], Adaptive Loss Alignment (ALA) [4], RaMBO (with gra-
dient interpolation) [8] and our MetricOpt.

approach (∼5k vs. <2k, with often more than 3× longer
training time). The joint training time is dominated by that
of optimizer learning (with costly unrolled derivatives). On
the side of value function learning, the corresponding cost
is much smaller. During meta-testing, the optimization cost
will not affected by value function at all since only the
learned optimizer is used.

More results We further benchmark the fully learned
MetricOpt on the large-scale ImageNet dataset. Table 1 val-
idates the advantage of MetricOpt (learned) over MetricOpt
(SGD) again. The comparison also confirms the efficacy of
our value function for gradient-based metric optimization.

3. Understanding Differences among Recent
Methods for Metric Optimization

In the field of non-differentiable metric optimization,
there are recent strong methods that have been compared
against in the main paper. Here we provide more anal-
yses and visualizations to explain the advantages of our
MetricOpt method. Recall MetricOpt learns a differentiable
value function that generates reliable gradient estimates of
metric to augment loss gradients. How does this impact the
training dynamics on the optimization landscape? Fig. 2
gives some hints by visualizing the typical optimization
surfaces of train loss and test metric, as well as the con-
verged solutions proposed by different methods. The com-
pared methods are of three types: loss function [3] designed
to approximate the target metric, adaptively learned loss
ALA [4], and RaMBO (with gradient interpolation) [8].

We observe from the figure that:

• loss and metric surfaces are different, verifying the need
for some form of metric supervision during optimization.

• All compared methods achieve low training loss values,
but their testing metrics have notable differences. This
confirms the observation in [2] that low-loss solutions
form a connected manifold, and further adds that they
tend to be distinct in the metric space due to different
ways of metric approximation.

• Specifically, both human-designed and learned losses
(i.e., AUCPR and ALA losses) need a relaxed surrogate
space to approximate metrics. Obviously, performance
will highly depend on the quality of such surrogate re-
laxations. For RaMBO, gradient interpolation is con-
ducted via black-box differentiation which can be criti-
cally affected by the sparsity of supervision signals and
interpolation details. Our MetricOpt sidesteps these chal-
lenges by a direct function approximation of target metric
(with value function). The resulting metric supervision
can adjust the optimization trajectory towards better met-
ric, leading to a solution off trajectories purely based on
surrogate losses. Fig. 2 shows that MetricOpt is able to
converge to the best performance metric while still main-
taining a low loss.

4. More Ablation Studies

Fig. 3 ablates the different training aspects of our value
function. We observe that:

• Learning with evaluation metrics from a subset of train-
ing data with the same size of validation set (default)
barely hurts performance. This suggests our advantages
mainly come from direct metric optimization, not just
from learning validation statistics.

• By default, we collectK = 5%T evaluation metrics from
each finetuning task with T iterations and then interpolate
sparse metrics temporally for value function learning. We
found a smaller K (e.g., K = 2.5%T) hinders effective
value function learning (hurts final performance too). On
the other hand, larger Ks slightly improve performance,
but lead to increased cost for dense metric evaluation.
Note when K = 100%T , we collect evaluation metrics
from all iterations, without using any metric interpola-
tion. This proves as unnecessary since the resulting gains
are pretty marginal.

• Regarding the value function input, we choose to use the
compact adapter parameters φ by default (with size 128
in the case here). Other options exist, including using
a small portion of the main network θ like the biases
of last layer. Results indicate last layer biases are not
enough to model metrics well, while using multi-layer bi-
ases becomes more parameter-inefficient with even worse
results. In our early experiments, we failed to learn value
function from the entire last layer for the same reason.

10.0
12.0

2.0
4.0
6.0
8.0

8.0
8.5

6.0
6.5
7.0
7.5

M
C

R
 (%

)

1-
A

U
C

PR
 (%

)10.0
12.0
14.0
16.0
18.0

2.0
4.0
6.0
8.0

8.0
8.5
9.0
9.5

10.0

6.0
6.5
7.0
7.5

Cross-e
ntropy baseline

Our M
etric

Opt (le
arned)

No PE for value func

No PE for optim
izer

Stand. M
LP for value func

Stand. M
LP for optim

izer

M
C

R
 (%

)

1-
A

U
C

PR
 (%

)

MetricOpt
(SGD)

Train
metric

K=2.5%T
evals

Layer
biases

K=20%T
evals

K=100%T
evals

Value func training signal Adapter
design

Figure 3. Ablation studies of value function for optimizing Miss-
Classification Rate (MCR) and Area Under the Precision Recall
Curve (AUCPR) on CIFAR-10 dataset. The AUCPR metric un-
dergoes a 1− x conversion (thus lower is better). In terms of both
metrics, we compare different training signals and input parame-
ters for the value function.

But when learning with φ, performance is reasonably ro-
bust to φ’s size which does not need careful tuning.

5. More Object Detection Results
The main paper (Table 6) shows notable improvements

over the Faster R-CNN detector by our direct metric op-
timization during finetuning. But what contributes to the
gains, and how does finetuning impact the different mod-
ules of Faster R-CNN (i.e., region proposal network and
detection network)? Fig. 4 sheds some light on these ques-
tions. Through finetuning for the AP metric, we observe
the region proposal network seems to have an improved re-
call on the proposed bounding boxes. Intuitively, such im-
proved object proposals should benefit the following detec-
tion module. This inspires an interesting future work, which
is to investigate different impacts on a multi-staged pipeline
when optimizing for different metrics.

References
[1] Marcin Andrychowicz, Misha Denil, Sergio Gómez,

Matthew W Hoffman, David Pfau, Tom Schaul, Brendan
Shillingford, and Nando de Freitas. Learning to learn by
gradient descent by gradient descent. In NeurIPS, 2016.

[2] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and
Fred Hamprecht. Essentially no barriers in neural network
energy landscape. In ICML, 2018.

[3] Elad Eban, Mariano Schain, Alan Mackey, Ariel Gordon,
Ryan Rifkin, and Gal Elidan. Scalable learning of non-
decomposable objectives. In AISTATS, 2017.

[4] Chen Huang, Shuangfei Zhai, Walter Talbott, Miguel Ángel
Bautista, Shih-Yu Sun, Carlos Guestrin, and Joshua M.
Susskind. Addressing the loss-metric mismatch with adap-
tive loss alignment. In ICML, 2019.

[5] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom
Goldstein. Visualizing the loss landscape of neural nets. In
NeurIPS, 2018.

[6] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel
Freeman, and Jascha Sohl-Dickstein. Understanding and

Blue - proposed boxGreen - ground truth Red - missed ground truth

Figure 4. Visual comparison between the region proposal networks of two Faster R-CNN baselines. Top row: object proposals (after IoU
thresholding) with standard Cross-Entropy loss (CE). Bottom row: object proposals with MetricOpt + CE. By direct optimization of the
target metric AP 50, MetricOpt is found to improve the region proposal module of the two-staged Faster R-CNN detector.

correcting pathologies in the training of learned optimizers.
In ICML, 2019.

[7] Ethan Perez, Florian Strub, Harm de Vries, Vincent Du-
moulin, and Aaron C. Courville. Film: Visual reasoning with
a general conditioning layer. In AAAI, 2018.

[8] Michal Rolinek, Vit Musil, Anselm Paulus, Marin Vlastelica,
Claudio Michaelis, and Georg Martius. Optimizing rank-
based metrics with blackbox differentiation. In CVPR, 2020.

[9] Olga Wichrowska, Niru Maheswaranathan, Matthew W.
Hoffman, Sergio Gmez Colmenarejo, Misha Denil, Nando
de Freitas, and Jascha Sohl-Dickstein. Learned optimizers
that scale and generalize. In ICML, 2017.

[10] Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja
Hofmann, and Shimon Whiteson. Fast context adaptation
via meta-learning. In ICML, 2019.

