
MultiBodySync:
Multi-Body Segmentation and Motion Estimation via 3D Scan Synchronization

— Supplementary Material

In this supplementary material, we first give the proofs
of the theorems in Sec. A, then provide more details of our
implementation and our dataset in Sec. B. Additional abla-
tions and results are shown in Sec. C.

A. Proofs of Theorems

A.1. Theorem 1

Proof. The energy function in Eq (2) of the main paper can
be written as:

E(p) =

K∑
k=1

K∑
l=1

wkl‖Pk −PklPl‖2F

=

K∑
k=1

K∑
l=1

N∑
i=1

wkl‖Pk
:i −PklPl

:i‖2

=

N∑
i=1

K∑
k=1

K∑
l=1

wkl‖Pk
:i‖2 + wlk‖Pl

:i‖2

− wkl(Pk
:i)
>(PklPl

:i)− wlk(Pl
:i)
>(PlkPk

:i)

=

N∑
i=1

2

K∑
k=1

(Pk
:i)
>

(
K∑
l=1

wkl(Pk
:i −PklPl

:i)

)

=

N∑
i=1

2

K∑
k=1

(Pk
:i)
>

(wkIN)Pk
:i −

∑
l 6=k

wklPklPl
:i

=2

N∑
i=1

p>:iLp:i = 2tr(p>Lp).

The spectral solution additionally requires each column
of p to be of unit norm and orthogonal to others relaxing
{Pkl ∈M}k,l:

min
p

tr(p>Lp) s.t. p>p = IN . (S.1)

This QCQP (Quadratically Constrained Quadratic Pro-
gram) is known to have the closed form solution revealed
by generalized Rayleigh problem [5] (or similarly, the
Courant-Fischer-Weyl min-max principle). The solution
is given by the N eigenvectors of L corresponding to the
smallest N eigenvalues.

A.2. Theorem 2

We first recall the spectral solution of the synchroniza-
tion problem and then extend the result to the weighted

variant we propose. For completeness, here we include
Z = gg>, the unweighted motion segmentation matrix:

Z =

0 ζ12 . . . ζ1K

ζ21 0 . . . ζ2K

...
...

. . .
...

ζK1 ζK2 . . . 0

 . (S.2)

Lemma 1 (Spectral theorem of synchronization). In the
noiseless regime and under spectral relaxation, the synchro-
nization problem can be cast as

max
U

tr(U>ZU) s.t. U>U = IS , (S.3)

where U ∈ RKN×S denotes the sought solution, i.e. abso-
lute permutations. Then each column in U will be one of
the S leading eigenvectors of matrix Z [1]:

U · diag(
√
λ1, . . . ,

√
λS) ≈ g =

G1

G2

...
GK

 , (S.4)

where λ1, . . . , λS are the leading eigenvalues of Z.

We now recall the weighted synchronization problem.
Here we assume the ζkl matrices are binary and satisfy the
properties listed in [1]. The weighted synchronization ma-
trix Z̃ is composed of a set of anisotropically-scaled ζkl

matrices:

Z̃ =

0 1

σ12 ζ
12 . . . 1

σ1K ζ
1K

1
σ21 ζ

21 0 . . . 1
σ2K ζ

2K

...
...

. . .
...

1
σK1 ζ

K1 1
σK2 ζ

K2 . . . 0

 . (S.5)

Remind that in the main paper we use the unweighted
synchronization (i.e. without 1

σ) by cancelling the effect of
the weights via a normalization. Thm. 2, which we now
state more formally, is then concerned about the linear scal-
ing of the solution proportional to the weights in the motion
segmentation matrix:

Theorem 2 (Weighted synchronization for segmentation).
The spectral solution to the weighted version of the syn-
chronization problem

max
Ũ

tr(Ũ>Z̃Ũ) s.t. Ũ>Ũ = IS (S.6)

1

is given by the columns of g̃:

Ũ · diag(
√
λ̃1, . . . ,

√
λ̃S) ≈ g̃ =

G1D1

G2D2

...
GKDK

 , (S.7)

Here λ̃1, . . . , λ̃S are the leading eigenvalues of Z̃, and
(D1, . . . ,DK ∈ RS×S) are diagonal matrices. In other
words, the columns of g̃ being the eigenvectors of Z̃ are re-
lated to the non-weighted synchronization by a piecewise
linear anisotropic scaling.

Proof. We begin by the observation that Kk = Gk>Gk is
a diagonal matrix where Kk

ss counts1 the number of points
in point cloud k belonging to part s. Hence, each element
along g>g =

∑K
k=1(K

k) counts the number of points over
all point clouds that belong to part s. Because Z = gg>, we
have the following spectral decomposition Zg = gΛ [1]:

Zg = gg>g = g

K∑
k=1

Gk>Gk = gΛ. (S.8)

To simplify notation we overload wkl by setting wkl =
1
σkl for the rest of this subsection. Let us now write Z̃g̃ in
a similar fashion and seek the similar emergent property of
eigen-decomposition:

Z̃g̃ =

K∑
l=1

w1lζ1lGlDl

K∑
l=1

w2lζ2lGlDl

...
K∑
l=1

wKlζKlGlDl

. (S.9)

1According to our assumption, this ‘count’ hereafter is only valid when
ζkls are binary and can be viewed as soft counting when such an assump-
tion is relaxed.

Then, using ζkl = GkGl> we can express Eq (S.9) as:

Z̃g̃ =

K∑
l=1

w1lG1Gl>GlDl

K∑
l=1

w2lG2Gl>GlDl

...
K∑
l=1

wKlGKGl>GlDl

(S.10)

=

G1
K∑
l=1

w1lGl>GlDl

G2
K∑
l=1

w2lGl>GlDl

...

GK
K∑
l=1

wKlGl>GlDl

=

G1H1

G2H2

...
GKHK

 (S.11)

where:

Hk =

K∑
k=1

wklGl>GlDl. (S.12)

H is a diagonal matrix because Dl is diagonal by assump-
tion. Note that, the first part in the summation is assumed to
be a known2 diagonal matrix (see the beginning of proof):

Ekl = wklGl>Gl, (S.13)

This form is very similar to Eq (S.7) scaled by the corre-
sponding diagonal matrices. Let us know consider the sth

column of g̃ responsible for part s. We are interested in
showing that such column is an eigenvector of Z̃:

Z̃g̃s = λ̃sg̃
s. (S.14)

In other words, we seek the existence of λ̃s such
that Eq (S.14) is satisfied. Moreover, a closed form expres-
sion of λ̃s would allow for the understanding of the effect
of the weights on the problem. Let us now plug Eq (S.7)
and Eq (S.11) into Eq (S.14) to see that:

(G1H1)s

(G2H2)s

...
(GKHK)s

 = λ̃s

(G1D1)s

(G2D2)s

...
(GKDK)s

 . (S.15)

As Gk is a binary matrix, it only actas as a column selector,
where for a single part s, a column of the motion segmen-
tation g̃ should contain only ones. We can use this idea and
the diagonal nature of Z̃g̃s to cancel Gk on each side. Re-

2We will see later in remark 1 why this is only an assumption.

2

arranging the problem in terms of scalars on the diagonal
yields:

H1
ss =

K∑
l=1

E1j
ssD

l
ss = λ̃sD

1
ss

H2
ss =

K∑
l=1

E2j
ssD

l
ss = λ̃sD

2
ss

...

HK
ss =

K∑
l=1

EKjss D
l
rr = λ̃sD

K
ss

(S.16)

where E is as defined in Eq (S.13). Note that both D and
λ̃s are unknowns in this seemingly non-linear problem. Yet,
we can re-arrange Eq (S.16) into another eigen-problem:

Jsds = λ̃′sd
s, (S.17)

where:

Js =

E11
ss E12

ss · · · E1K
ss

E21
ss E22

ss · · · E2K
ss

...
. . .

...
EK1
ss EK2

ss · · · EKKss

 ds =

D1
ss

D2
ss
...

DK
ss

 . (S.18)

Hence, we conclude that the eigenvectors of the
weighted synchronization have the form of Eq (S.17) if and
only if we can solve Eq (S.7). This is possible as soon as
Ekl are known and Js has real eigenvectors. Besides an ex-
istence condition, Eq (S.7) also provides an explicit closed
form relationship between the weights and the eigenvectors
once Ekl are available.

Remark 1. Note that the symmetric eigen-problem given
in Eq (S.18) only requires the matrix Ekl for all k, l.
By definition, each element along the diagonal of Ekl =
wklGk>Gl denotes the number of points in each point
cloud belonging to each part weighted by w. Hence, it does
not require the complete knowledge on the part segmenta-
tion but only the amount of points per part. While this is
unknown in practice, for the sake of our theoretical anal-
ysis, we might assume the availability of this information.
Hence, we could speak of solving Eq (S.17) for each part s.

Remark 2. It is also interesting to analyze the scenario
where one assumes ds = 1 for each s. In fact, this is what
would happen if one were to naively use the unweighted
solution for a weighted problem, i.e. use g̃ itself as the esti-
mate of motion segmentation, as our closed form expression
for Dk (Eq (S.18)) cannot be evaluated in test time. Then,

assuming Dk to be the identity, for each k it holds:

K∑
l=1

Eklss =

K∑
l=1

wklGk>(Gl)s (S.19)

= wk1G1>(G1)s + · · ·+ wkKGK>(GK)s

= wk ·
[
G1>(G1)s · · · GK>(GK)s

]
= wkϕ

s = λ̃′s. (S.20)

where (Gl)s is the s-th column of Gl. The final equality
follows directly from Eq (S.16) when Dss = 1. Note that
we can find multiple weights wk satisfying Eq (S.20). For
instance, if ϕ and λ were known, one solution for any s
would be:

wkl =
λ̃s
Kϕsk

. (S.21)

Because (i) we cannot assume a uniform prior on the num-
ber of points associated to each part and (ii) it would
be costly to perform yet another eigendecomposition, we
choose to cancel the effect of the predicted weights wij as
we do in the paper by a simple normalization procedure.
However, such unweighted solution would only be possible
because our design encoded the weights in the norm of each
entry in the predicted ζklnet.

B. Implementation Details

B.1. Network Structures

B.1.1 Flow Prediction Network

We adapt our own version of flow prediction network ϕflow

from PointPWC-Net [14] by changing layer sizes and the
number of pyramids. As illustrated in Fig. S1, the net-
work predicts 3D scene flow in a coarse-to-fine fashion.
Given input Xk as source point cloud and Xl as target
point cloud, a three-level pyramid is built for them using
furthest point sampling as {Xk,(0) = Xk,Xk,(1),Xk,(2)}
and {Xl,(0) = Xl,Xl,(1),Xl,(2)}, with point counts being
512, 128, 32, respectively. Similarly, we denote the flow
predicted at each level as {Fkl,(0),Fkl,(1),Fkl,(2)}. Per-
point features for all points are then extracted with dimen-
sion 128, 192 and 384 for each hierarchy. A 3D ‘Cost
Volume’ [8] is then computed for the source point cloud
by aggregating the features from Xk and Xl for the point
pyramid, with feature dimension 64, 128 and 256. This
aggregation uses the neighborhood information relating the
target point cloud and the warped source point cloud in a
patch-to-patch manner. The cost volume, containing valu-
able information about the correlations between the point
clouds, is fed into a scene flow prediction module for final
flow prediction. The predicted flow at the coarser level can
be upsampled via interpolation and help the prediction of
the finer level. Readers are referred to [14] for more details.

3

𝐗𝑘, 0

512 × 3
L0-Feature

512 × 128

L1-Feature

128 × 192

L2-Feature

32 × 384

𝐗𝑘, 1

128 × 3

Cost Volume

512 × 64

Cost Volume

128 × 128

Cost Volume

32 × 256

Flow Feature

32 × 128

𝐗𝑘, 2

32 × 3

𝐗𝑙, 0

512 × 3
L0-Feature

512 × 128

L1-Feature

128 × 192

L2-Feature

32 × 384

𝐗𝑙, 1

128 × 3

𝐗𝑙, 2

32 × 3

𝐅𝑘𝑙, 2

32 × 3

Flow Feature

128 × 128
𝐅𝑘𝑙, 1

128 × 3

𝐅𝑘𝑙, 0

512 × 3

Downsampling Cost Volume Layer

UpsamplingWarping

Scene Flow Prediction

Input & Output

Figure S1. Our adapted version of PointPWC-Net ϕflow. Each
rectangular block denotes a tensor, whose size is written as N×C
(batch dimension is ignored) below its name, with N being the
number of points and C being the feature dimension. The network
is composed of 3 hierarchical levels. At each level, features from
the two input point clouds are fused via a Cost Volume Layer,
which digests warped point cloud and features from the upsam-
pled coarse flow estimated from the last level and provides a cost
volume for flow prediction.

B.1.2 Confidence Estimation Network

The confidence estimation network ϕconf we use, adapted
from OANet (Order-Aware Network) [18], learns inlier
probability of point correspondences. In our case, each cor-
respondence is represented as a R7 vector as described in
the main paper. Different from other network architectures
like PointNet [11], OANet features in the novel differen-
tiable pooling (DiffPool) and unpooling (DiffUnpool) op-
erations as well as the order-aware filtering block, which
are demonstrated to effectively gather local context and are
hence useful in geometric learning settings, especially for
outlier rejection [2].

The network starts and ends with 6 PointCN [10] lay-
ers, which globally exchanges the point feature information
by context normalization (i.e. whitening along the channel
dimension to build cross-point relationship). In between
the PointCNs lies the combination of DiffPool layer, order-
aware filtering block and DiffUnpool layer. The DiffPool
layer learns an N ×M soft assignment matrix, where each
row represents the classification score of each point being
assigned to one of the M ‘local clusters’. These local clus-
ters represent local structures in the correspondence space
and are implicitly learned. As the M clusters are in canoni-
cal order, the feature after the DiffPool layer is permutation-
invariant, enabling the order-aware filtering block afterward
to apply normalization along the spatial dimension (i.e.,
‘Spatial Correlation Layer’) for capturing a more complex

(a)

(b)

Figure S2. Examples from our training set for (a) articulated ob-
jects and (b) multiple solid objects. Different colors indicate
rigidly moving parts.

global context. In our ϕconf , we choose M = 64.

B.1.3 Motion Segmentation Network

The architecture of ϕmot has been already introduced in the
main paper. Here we elaborate how the transformations T̃kl

i

are estimated by PointNet++. The input to the network is
the stacked [(Xk)> (F̂kl)>]> ∈ R6×N and the output is
in R12×N , where for each point we take the first 9 dimen-
sions as the elements in the rotation matrix and the last 3
dimensions as the translation vector.

In practice, direct transformation estimation from the
PointNet++ is not accurate. Given that we have already
obtained the flow vectors, instead of estimating T̃kl

i , we
compute a residual motion w.r.t. the given flow similar to
the method in [16]. Specifically, when the actual outputs
from the network are Rnet ∈ R3×3 and tnet ∈ R3, the
transformations used in subsequent steps of the pipeline
T̃kl
i = [R̃kl

i |t̃kli] are computed as follows:

R̃kl
i = Rnet + I3, t̃kli = tnet −Rnetx

k
i + f

kl
i . (S.22)

Note that we do not ensure T̃kl
i is in SE(3) with SVD-like

techniques. In fact the transformation is not directly su-
pervised (neither in this module nor in the entire pipeline)
and the nearest supervision comes from βkl matrix through
Eq (9). This avoids the efforts to find a delicate weight for
balancing the rotational and translational part of the trans-
formation.

B.2. Pose Computation and Iterative Refinement

Given the synchronized pairwise flow f̂kl and motion
segmentation Gk, we estimate the motion separately for
each rigid part using a weighted Kabsch algorithm [7]. The
weight for point xki and the rigid motion s between Xk and
Xl is taken as ckli G

k
is. We then use similar techniques as

in [3, 6] to estimate the motions separately for each part.
The point clouds to register can have a large difference in

poses making it hard for the flow network to recover. This
might lead to wrong results in the subsequent steps. In-

4

Figure S3. Visualization of the DynLab dataset. Each row shows 8 different dynamic configurations of the same set of rigid objects.
Annotated bounding boxes are parallel to the ground plane and reflect the objects’ absolute poses.

spired by point cloud registration works [16, 3], during test
time we iterate our pipeline several times to gradually re-
fine the correspondence and segmentation estimation. In

particular, we use the transformation Tk∗

s (Tk
s)
−1 estimated

at iteration t− 1 to transform all the points in all point sets
belonging to part s to the canonical pose of the k∗-th point

5

Table S1. Training and validation categories from [17] used for
articulated objects.

Training
Categories

Table Chair Plane Car
Guitar Bike Suitcase

Validation
Categories

Lamp Pistol Mug Skateboard
Earphone Rocket Cap

Table S2. Training and validation categories from [17] used for
multiple solid objects.

Training
Categories

Table Knife Plane Car
Guitar Bike Suitcase Laptop

Validation
Categories

Lamp Pistol Mug Skateboard
Earphone Rocket Cap

cloud. Note that the choice of k? is arbitrary, and we choose
k? = 1. Then at iteration t, we feed the transformed point
clouds to the flow network again to compute the residual
flow, which is added back onto the flow predicted at itera-
tion t − 1 to form the input of the segmentation network.
The progress works reciprocally, as differences in poses of
the point clouds are gradually minimized and the flow es-
timation will hence become more accurate, leading to bet-
ter segmentation and transformations. Specially, during the
first iteration where pose differences are usually large, we
treat the point clouds as if they are composed of only one
rigid part to globally align the shapes. This will provide a
good pose initialization for subsequent iterations.

B.3. Dataset

Training Data. To demonstrate the generalizability of
our method across different semantic categories, we ensure
the categories used for training, validation and test have no
overlap. For articulated objects, the categories we use are
shown in Tab. S1. For multiple solid objects, the categories
are listed in Tab. S2. Examples from our training set are
visualized in Fig. S2.

DynLab dataset. A full visualization of the DynLab
dataset with manual annotations is shown in Fig. S3. We
will make the scans publicly available.

C. Additional Results

C.1. Extended Ablations

In this subsection we provide more complete ablations
extending § 4.3 of the main paper. A full listing of the base-
lines we compare is as follows:

• Ours (1 iter): The pipeline is iterated only once, with-
out the global alignment step as described in § B.2.

• Ours (NS, NW): Same as the main paper, we directly
feed Fkl instead of F̂kl to the motion network ϕmot.

Input

Source

Input

Target

Predicted

Flow

Ours

(S, NW)

Ours

(S, W)

2.0

0.0

Figure S4. Visual comparisons of the pairwise flow. To visualize
the flow we warp the source point cloud and compare the its simi-
larity with the target point cloud. The color bar on the right shows
the end-point error (EPE3D). ‘Ours (S, W)’ represents the out-
put of our method with the Weighted permutation Synchronization
scheme.

• Ours (S, NW): Same as the main paper, we set all
weights of the permutation synchronization wkl = 1.

• Ours (UNZ): The unnormalized matrix Z̃ (Eq (S.5)) is
used as input to motion segmentation synchronization,
i.e., the normalizing factors are set to σkl = 1.

• Ours (4 iters): Full pipeline of our method, with 4
steps of iterative refinement.

We show comparisons of the final rigid flow error us-
ing EPE3D metric on both SAPIEN and DynLab dataset in
Fig. S5 and S6 respectively. Results indicate that all the
components introduced in our algorithm, including iterative
refinement, weighted synchronization, and the pre-factoring
of the motion segmentation matrix, contribute to the im-
provement of accuracy under different scenarios. Note that
in DynLab dataset, the performance of ‘Ours (UNZ)’ is very
similar to ‘Ours (4 iters)’ because the motion segmentation
accuracy is already high (Tab. 3 of the main paper) due to
the good quality of each individual ζnet output, rendering
normalization optional in practice.

We provide additional visual examples demonstrating
the effectiveness of our weighted permutation synchroniza-
tion in Fig. S4, where direct flow output fails due to large
pose changes between the input clouds, and a naive un-
weighted synchronization still suffers from such failure be-
cause the influence of wrong correspondences is not elimi-
nated.

For completeness we include per-category segmentation
accuracy of articulated objects on SAPIEN [15] dataset in
Tab. S3. The variants of our method perform consistently
better than other methods for nearly all categories, showing
the robustness of our model for accurate multi-scan motion-

6

Table S3. Per-category mIoU comparisons on SAPIEN [15] dataset.

Box Dishwasher Display
Storage

Furniture
Eyeglasses Faucet Kettle Knife Laptop Lighter

PointNet++ [12] 43.5 46.8 54.8 51.3 34.6 42.4 65.7 43.0 58.5 52.3
MeteorNet [9] 47.0 42.2 41.7 36.9 36.1 47.1 67.2 36.2 57.9 61.3
DeepPart [16] 53.3 55.1 47.4 48.7 31.8 43.4 64.7 38.5 67.3 39.0
NPP [4] 41.4 63.7 57.3 48.0 35.3 45.4 50.7 44.5 61.1 50.7
Ours (1 iter) 67.6 57.3 66.3 68.1 57.8 54.7 83.3 55.5 78.6 52.0
Ours (NS, NW) 67.1 61.6 62.6 67.5 60.6 50.3 78.3 53.6 77.5 51.5
Ours (S, NW) 71.4 58.9 68.8 71.3 61.7 57.2 81.4 57.8 82.7 64.6
Ours (UNZ) 71.5 59.6 69.1 71.6 62.1 58.0 78.9 57.8 82.7 65.0
Ours (4 iters) 72.0 62.0 67.4 73.1 66.2 56.2 80.7 56.4 83.3 62.6

Microwave Oven Phone Pliers Safe Stapler Door Toilet TrashCan
Washing
Machine

Overall

PointNet++ [12] 51.5 42.6 46.2 63.6 55.7 43.0 42.7 40.0 51.2 49.8 47.5
MeteorNet [9] 37.4 37.1 41.7 43.4 33.7 54.7 33.3 38.3 61.5 41.9 43.7
DeepPart [16] 65.9 49.8 41.9 32.9 57.5 47.0 38.6 39.1 65.1 59.5 49.2
NPP [4] 56.4 39.7 48.4 61.3 55.9 45.5 40.4 31.2 51.0 48.4 48.2
Ours (1 iter) 61.6 54.7 52.5 50.6 59.4 67.0 47.1 55.7 79.3 64.2 62.9
Ours (NS, NW) 74.6 59.0 49.4 57.0 62.2 65.6 45.1 52.0 76.1 72.9 63.3
Ours (S, NW) 62.8 52.3 54.1 51.4 62.5 72.0 49.0 57.2 81.1 71.2 65.6
Ours (UNZ) 62.7 52.2 55.1 49.9 61.3 72.3 48.8 57.5 81.4 71.4 65.8
Ours (4 iters) 69.3 56.1 54.6 63.9 63.9 70.2 48.3 56.5 80.4 72.1 66.7

0.02 0.04 0.06 0.08 0.10 0.12 0.14
EPE3D

0.2

0.4

0.6

0.8

EC
D

F

Ours (1 iter)
Ours (NS, NW)
Ours (S, NW)
Ours (UNZ)
Ours (4 iters)

Figure S5. Empirical cumulative distribution function (ECDF) of
rigid flow error (EPE3D) on SAPIEN [15] dataset. The higher the
curve, the better the results.

based segmentation.

C.2. Qualitative Results
To provide the readers with a more intuitive under-

standing of our performance under different cases, we il-
lustrate in Fig. S7 the scenarios with co-existing articu-
lated/solid objects and multiple cars in a scene of Waymo
Open dataset [13] (though the car category is within our
training set). Moreover, we show in Fig. S8 to S10 our
segmentation and registration results for each category in
SAPIEN [15] dataset, covering most of the articulated ob-
jects in real world. Due to the irregular random point sam-
pling pattern and the natural motion ambiguity, in some
examples, our method may generate excessive rigid parts,

0.00 0.05 0.10 0.15 0.20 0.25 0.30
EPE3D

0.0

0.2

0.4

0.6

0.8

EC
D

F

Ours (1 iter)
Ours (NS, NW)
Ours (S, NW)
Ours (UNZ)
Ours (4 iters)

Figure S6. Empirical cumulative distribution function (ECDF) of
rigid flow error (EPE3D) on DynLab dataset. The higher the curve,
the better the results.

! "

$

! " # $

Figure S7. Quantitative demonstrations on complex scans. The
first row is estimated using our trained articulated objects model
while the last row is obtained by hierarchically apply our method
to each segmented part until convergence. ¬-¯ indicates scan in-
dex. Best viewed with 200% zoom in.

7

which can be possibly eliminated by a carefully-designed
post-processing step and is out of the scope of this work.
We also show results from the DynLab dataset in Fig. S11.
Our method can generate robust object associations under
challenging settings.

References
[1] Federica Arrigoni and Tomas Pajdla. Motion segmentation

via synchronization. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision Workshops, 2019. 1,
2

[2] JiaWang Bian, Wen-Yan Lin, Yasuyuki Matsushita, Sai-Kit
Yeung, Tan-Dat Nguyen, and Ming-Ming Cheng. Gms:
Grid-based motion statistics for fast, ultra-robust feature cor-
respondence. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 4

[3] Zan Gojcic, Caifa Zhou, Jan D Wegner, Leonidas J Guibas,
and Tolga Birdal. Learning multiview 3d point cloud regis-
tration. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020. 4, 5

[4] David S Hayden, Jason Pacheco, and John W Fisher. Non-
parametric object and parts modeling with lie group dynam-
ics. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020. 7

[5] Roger A Horn and Charles R Johnson. Matrix analysis.
Cambridge university press, 2012. 1

[6] Xiangru Huang, Zhenxiao Liang, Xiaowei Zhou, Yao Xie,
Leonidas J Guibas, and Qixing Huang. Learning transfor-
mation synchronization. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
8082–8091, 2019. 4

[7] Wolfgang Kabsch. A solution for the best rotation to re-
late two sets of vectors. Acta Crystallographica Section A:
Crystal Physics, Diffraction, Theoretical and General Crys-
tallography, 1976. 4

[8] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep stereo
regression. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 66–75, 2017. 3

[9] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteor-
net: Deep learning on dynamic 3d point cloud sequences. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 9246–9255, 2019. 7

[10] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit,
Mathieu Salzmann, and Pascal Fua. Learning to find good
correspondences. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018. 4

[11] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017. 4

[12] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017. 7

[13] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2446–2454, 2020. 7

[14] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. Pointpwc-net: Cost volume on point clouds for (self-)
supervised scene flow estimation. In European Conference
on Computer Vision, pages 88–107. Springer, 2020. 3

[15] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,
He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and
Hao Su. SAPIEN: A simulated part-based interactive envi-
ronment. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, June 2020. 6, 7

[16] Li Yi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, Hao
Su, and Leonidas Guibas. Deep part induction from articu-
lated object pairs. ACM Trans. Graph., 37(6), 2018. 4, 5,
7

[17] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework
for region annotation in 3d shape collections. ACM Trans.
Graph., 35(6):1–12, 2016. 6

[18] Jiahui Zhang, Dawei Sun, Zixin Luo, Anbang Yao, Lei
Zhou, Tianwei Shen, Yurong Chen, Long Quan, and Hon-
gen Liao. Learning two-view correspondences and geome-
try using order-aware network. In Proceedings of the IEEE
International Conference on Computer Vision, 2019. 4

8

1st

Input

2nd

Input

3rd

Input

4th

Input

1st GT

Segm.

2nd GT

Segm.

3rd GT

Segm.

4th GT

Segm.

1st PD

Segm.

2nd PD

Segm.

3rd PD

Segm.

4th PD

Segm.

Multi-Body

Registered

Point Cloud

Box

Legend

Monitor

EyeGlasses

Laptop

Lighter

Kettle

Figure S8. Qualitative results on SAPIEN dataset (1/3).

Window

Phone

Washing Machine

Stapler

Trash Can

Pliers

Dish Washer

Figure S9. Qualitative results on SAPIEN dataset (2/3).

9

Storage Furniture

Oven

Microwave

Faucet

Knife

Safe

Toilet

Figure S10. Qualitative results on SAPIEN dataset (3/3).
Figure S11. Qualitative results on DynLab dataset.

10

