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A. Appendix
In this supplementary material, we first provide rigor-

ous definitions of evaluation metrics (Sec. A.1), then de-
scribe the data pre-processing step (Sec. A.2), network ar-
chitectures (Sec. A.4) and training on individual datasets
(Sec. A.3) in more detail. We further provide additional
results (Sec. A.5), ablation studies (Sec. A.6) as well as
a runtime analysis (Sec. A.7). Finally, we show more vi-
sualisations on 3DLoMatch and ModelLoNet benchmarks
(Sec. A.8).

A.1. Evaluation metrics

The evaluation metrics, which we use to assess model
performance in Sec. 4 of the main paper and Sec. A.5 of this
supplementary material, are formally defined as follows:

Inlier ratio looks at the set of putative correspondences
(p,q) ∈ Kij found by reciprocal matchingin feature space,
and measures what fraction of them is ”correct”, in the sense
that they lie within a threshold τ1 =10 cm after registering
the two scans with the ground truth transformation TQ

P :

IR =
1

|Kij |
∑

(p,q)∈Kij

[
||TQ

P(p)− q||2 < τ1
]
, (1)

with [·] the Iverson bracket.
Feature Match recall (FMR) [5] measures the fraction

of point cloud pairs for which, based on the number of in-
lier correspondences, it is likely that accurate transformation
parameters can be recovered with a robust estimator such as
RANSAC. Note that FMR only checks whether the inlier
ratio is above a threshold τ2 = 0.05. It does not test if the
transformation can actually be determined from those corre-
spondences, which in practice is not always the case, since
their geometric configuration may be (nearly) degenerate,
e.g., they might lie very close together or along a straight
edge. A single pair of point clouds counts as suitable for
registration if

IR > τ2 (2)
∗First two authors contributed equally to this work.

Registration recall [2] is the most reliable metric, as
it measures end-to-end performance on the actual task of
point cloud registration. Specifically, it looks at the set of
ground truth correspondences H∗ij after applying the esti-
mated transformation TQ

P , computes their root mean square
error,

RMSE =

√√√√ 1∣∣H∗ij∣∣
∑

(p,q)∈H∗
ij

||TQ
P(p)− q||22 , (3)

and checks for what fraction of all point pairs RMSE<0.2.
In keeping with the original evaluation script of 3DMatch,
immediately adjacent point clouds are excluded, since they
have very high overlap by construction.

Chamfer distance measures the quality of registration
on synthetic data. We follow [12] and use the modified
Chamfer distance metric:

C̃D(P,Q) =
1

|P|
∑
p∈P

min
q∈Qraw

‖TQ
P(p)− q‖22+

1

|Q|
∑
q∈Q

min
p∈Praw

‖q−TQ
P(p)‖22

(4)

where Praw ∈ R2048×3 and Qraw ∈ R2048×3 are raw source
and target point clouds, P ∈ R717×3 and Q ∈ R717×3 are
input source and target point clouds.

Relative translation and rotation errors (RTE/RRE)
measures the deviations from the ground truth pose as:

RTE = ‖t− t‖2

RRE = arccos
( trace(RTR)− 1

2

) (5)

where R and t denote the estimated rotation matrix and
translation vector, respectively.

Empirical Cumulative Distribution Function (ECDF)
measures the distribution of a set of values:

ECDF(x) =

∣∣{oi < x}
∣∣∣∣O∣∣ (6)
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np γ V rp rs ro rm

3DMatch 256 24 0.025 0.0375 0.1 0.0375 0.05
ModelNet 384 64 0.06 0.018 0.06 0.04 0.04

odometryKITTI 512 40 0.3 0.21 0.75 0.45 0.3

Table 1: Hyper-parameters configurations for different
datasets.

where O is a set of values(ovelap ratios in our case) and
x ∈ [min{O},max{O}].

A.2. Dataset preprocessing

3DMatch: [13] is a collection of 62 scenes, combining
earlier data from Analysis-by-Synthesis [10], 7Scenes [9],
SUN3D [11], RGB-D Scenes v.2 [8], and Halber et al. [7].
The official benchmark splits the data into 54 scenes for
training and 8 for testing. Individual scenes are not only
captured in different indoor spaces (e.g., bedrooms, offices,
living rooms, restrooms) but also with different depth sen-
sors (e.g., Microsoft Kinect, Structure Sensor, Asus Xtion
Pro Live, and Intel RealSense). 3DMatch provides great
diversity and allows our model to generalize across differ-
ent indoor spaces. Individual scenes of 3DMatch are split
into point cloud fragments, which are generated by fus-
ing 50 consecutive depth frames using TSDF volumetric
fusion [4]. As a preprocessing step, we apply voxel-grid
downsampling to all point clouds, and if multiple points fall
into the same voxel, we randomly pick one.
ModelNet40: For each CAD model of ModelNet40, 2048
points are first generated by uniform sampling and scaled
to fit into a unit sphere. Then we follow [12] to produce
partial scans: for source partial point cloud, we uniformly
sample a plane through the origin that splits the unit sphere
into two half-spaces, shift that plane along its normal until
b2048 · pvc points are on one side, and discard the points
on the other side; the target point cloud is generated in the
same manner; then the two resulting, partial point clouds
are randomly rotated, translated and jittered with Gaussian
noise. For the rotation, we sample a random axis and a
random angle<45◦. The translation is sampled in the range
[−0.5, 0.5]. Gaussian noise is applied per coordinate with
σ = 0.05. Finally, 717 points are randomly sampled from
the b2048 · pvc points.
odometryKITTI: The dataset was captured using a Velo-
dyne HDL-64 3D laser scanner by driving around the mid-
size city of Karlsruhe, in rural areas and on highways. The
ground truth poses are provided by GPS/IMU system. We
follow [1] to use ICP to reduce the noise in the ground truth
poses.

A.3. Implementation and training

For 3DMatch/Modelnet/KITTI, we train PREDATOR us-
ing Stochastic Gradient Descent for 30/ 200/ 150 epochs,

# strided convolution first conv. final
convolutions radius feature dim. feature dim.

3DMatch (Predator) 3 2.5 64 32
3DMatch (bigPredator) 3 2.5 128 32

ModelNet 2 2.75 256 96
odometryKITTI 3 4.25 128 32

Table 2: Different network configurations for 3DMatch,
ModelNet and odometryKITTI datasets.

with initial learning rate 0.005/ 0.01/ 0.05, momentum 0.98,
and weight decay 10−6. The learning rate is exponentially
decayed by 0.05 after each epoch. Due to memory con-
straints we use batch size 1 in all experiments. The dataset-
dependent hyper-parameters which include number of neg-
ative pairs in circle loss np, temperature factor γ, voxel size
V , search radius for positive pair rp, safe radius rs, overlap
and matchability radius ro and rm are given in Tab. 1. For
more details please see our code.

A.4. Network architecture

The detailed network architecture of PREDATOR is de-
picted in Fig. 2. Our model is built on the KPConv im-
plementation from the D3Feat repository.2 We comple-
ment each KPConv layer with instance normalisation Leaky
ReLU activations. The l-th strided convolution is applied to
a point cloud dowsampled with voxel size 2l · V . Upsam-
pling in the decoder is performed by querying the associated
feature of the closest point from the previous layer.

With ≈20k points after voxel-grid downsampling, the
point clouds in 3DMatch are much denser than those of
ModelNet40 with only 717 points. Moreover, they also have
larger spatial extent with bounding boxes up to 3×3×3 m3,
while ModelNet40 point clouds are normalised to fit into
a unit sphere. To account for these large differences, we
slightly adapt the encoder and decoder per dataset, but keep
the same overlap attention model. Differences in network
hyper-parameters are shown in Tab. 2.

A.5. Additional results

Detailed registration results: We report detailed per-
scene Registration Recall (RR), Relative Rotation Error
(RRE) and Relative Translation Error (RTE) in Tab. 3. RRE
and RTE are only averaged over successfully registered
pairs for each scene, such that the numbers are mot dom-
inated by gross errors from complete registration failures.
We get the highest RR and lowest or second lowest RTE and
RRE for almost all scenes, this further shows that our over-
lap attention module together with probabilistic sampling
supports not only robust, but also accurate registration.
Feature match recall: Finally, Fig. 1 shows that our de-
scriptors are robust and perform well over a wide range of

2https://github.com/XuyangBai/D3Feat.pytorch



3DMatch 3DLoMatch
Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Avg. STD Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Avg. STD

# Sample

449 106 159 182 78 26 234 45 160 128 524 283 222 210 138 42 237 70 191 154

Registration Recall (%)

3DSN [6] 90.6 90.6 65.4 89.6 82.1 80.8 68.4 60.0 78.4 11.5 51.4 25.9 44.1 41.1 30.7 36.6 14.0 20.3 33.0 11.8
FCGF [3] 98.0 94.3 68.6 96.7 91.0 84.6 76.1 71.1 85.1 11.0 60.8 42.2 53.6 53.1 38.0 26.8 16.1 30.4 40.1 14.3
D3Feat [1] 96.0 86.8 67.3 90.7 88.5 80.8 78.2 64.4 81.6 10.5 49.7 37.2 47.3 47.8 36.5 31.7 15.7 31.9 37.2 10.6
Ours 97.1 96.2 73.6 96.7 94.9 84.6 85.9 77.8 88.3 8.7 66.3 58.9 55.0 71.8 57.7 46.3 39.8 37.7 54.2 11.4

Relative Rotation Error (◦)

3DSN [6] 1.926 1.843 2.324 2.041 1.952 2.908 2.296 2.301 2.199 0.321 3.020 3.898 3.427 3.196 3.217 3.328 4.325 3.814 3.528 0.414
FCGF [3] 1.767 1.849 2.210 1.867 1.667 2.417 2.024 1.792 1.949 0.236 2.904 3.229 3.277 2.768 2.801 2.822 3.372 4.006 3.147 0.394
D3Feat [1] 2.016 2.029 2.425 1.990 1.967 2.400 2.346 2.115 2.161 0.183 3.226 3.492 3.373 3.330 3.165 2.972 3.708 3.619 3.361 0.227
Ours 1.859 1.808 2.373 1.816 1.825 2.315 2.047 1.926 1.996 0.214 3.225 3.017 3.183 3.013 3.165 3.421 3.446 2.873 3.168 0.186

Relative Translation Error (m)

3DSN [6] 0.059 0.070 0.079 0.065 0.074 0.062 0.093 0.065 0.071 0.010 0.082 0.098 0.096 0.101 0.080 0.089 0.158 0.120 0.103 0.024
FCGF [3] 0.053 0.056 0.071 0.062 0.061 0.055 0.082 0.090 0.066 0.013 0.084 0.097 0.076 0.101 0.084 0.077 0.144 0.140 0.100 0.025
D3Feat [1] 0.055 0.065 0.080 0.064 0.078 0.049 0.083 0.064 0.067 0.011 0.088 0.101 0.086 0.099 0.092 0.075 0.146 0.135 0.103 0.023
Ours 0.051 0.062 0.072 0.059 0.062 0.049 0.078 0.079 0.064 0.011 0.081 0.091 0.075 0.093 0.098 0.091 0.114 0.087 0.091 0.011

Table 3: Detailed results on the 3DMatch and 3DLoMatch datasets.

3DMatch 3DLoMatch
matchability overlap FMR IR RR FMR IR RR

96.0 43.6 83.9 69.3 15.7 39.3
3 96.3 48.4 87.8 72.2 19.4 50.8

3 96.1 46.2 88.0 71.3 16.9 49.3
3 3 96.6 49.9 88.3 71.7 20.0 54.2

Table 4: Different combinations of scores used for proba-
bilistic sampling.

thresholds for the allowable inlier distance and the mini-
mum inlier ratio. Notably, PREDATOR consistently outper-
forms D3Feat that uses a similar KPConv backbone.

A.6. Additional ablation studies

Ablations of matchability score: We find that proba-
bilistic sampling guided by the product of the overlap and
matchability scores attains the highest RR. Here we further
analyse the impact of each individual component. We first
construct a baseline which applies random sampling (rand)
over conditioned features, then we sample points with prob-
ability proportional to overlap scores (prob. (o)), to match-
ability scores (prob. (m)), and to the combination of the
two scores (prob. (om)). As shown in Tab. 4, rand fares
clearly worse, in all metrics. Compared to prob. (om), ei-
ther prob. (o) or prob. (m) can achieve comparable results
on 3DMatch; the performance gap becomes big on the more
challenging 3DLoMatch dataset, where our prob. (om) is
around 4 pp better in terms of RR.
Ablations of overlap attention module with FCGF: To
demonstrate the flexibility of our model, we additionally
add proposed overlap attention module to FCGF model. We

3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Registration Recall (%)

FCGF [3] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
FCGF+OA 88.4 87.7 87.8 87.0 84.3 53.4 55.8 57.5 56.4 50.9

Table 5: Ablation of the proposed overlap attention module
with sparse convolution backbone. FCGF + OA denotes
adding proposed overlap attention module to FCGF model.

data
loader encoder overlap

attention decoder overall

FCGF [3] 206 414 — 25 445
D3Feat [1] 200 411 — 63 274

Ours 191 419 70 61 271

Table 6: Runtime per fragment pair in milli-seconds, aver-
aged over 1623 test pairs of 3DMatch.

train it on 3DMatch dataset with our proposed loss for 100
epochs, the results are shown in Tab. 5. It shows that FCGF
can also greatly benefit from the overlap attention module.
Registration recall almost doubles when sampling only 250
points on the challenging 3DLoMatch benchmark.

A.7. Timings

We compare the runtime of PREDATOR with FCGF3 [3]
and D3Feat4 [1] on 3DMatch. For all three methods we
set voxel size V =2.5 cm and batch size 1. The test is run
on a single GeForce GTX 1080 Ti with Intel(R) Core(TM)
i7-7700K CPU @ 4.20GHz, 32GB RAM. The most time-

3All experiments were done with MinkowskiEngine v0.4.2.
4We use its PyTorch implementation.



Figure 1: Feature matching recall in relation to inlier distance threshold τ1 (left) and inlier ratio threshold τ2 (right)

consuming step of our model, and also of D3Feat, is the
data loader, as we have to pre-compute the neighborhood
indices before the forward pass. With its smaller encoder
and decoder, but the additional overlap attention module,
PREDATOR is still marginally faster than D3Feat. FCGF has
a more efficient data loader that relies on sparse convolution
and queries neighbors during the forward pass. See Tab. 6.

A.8. Qualitative visualization

We show more qualitative results in Fig. 3 and Fig. 4 for
3DLoMatch and ModelLoNet respectively. The input points
clouds are rotated and translated here for better visualiza-
tion of overlap and matchability scores.
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Figure 2: Network architecture of PREDATOR for 3DMatch (middle) and ModelNet (bottom). In the cross attention module,
for each (query si ∈ Rb×1 , key ki ∈ Rb×1, value vi ∈ Rb×1),

⊙
denotes first reshape them into shape (4, b4 )(4 heads), then

compute scores matrix S from si and ki, finally get message update from vi and reshape back to (b, 1).



Figure 3: Example results on 3DLoMatch.



Figure 4: Example results on ModelLoNet.


