
Supplementary Materials of
Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture

Generator

A. More Details of Experimental Settings
A.1. Dataset

We perform all experiments based on the ImageNet
dataset [4]. Same as the settings in [1][7][2], we randomly
sample 50,000 images (50 images for each class) from the
training set as our validation set, and the rest is kept as the
training set. The original validation set is taken as the test
set to measure the final performance of each model. The
resolution of input images is 224×224.

A.2. Supernet Training

We train the unified supernet for 50 epochs using batch
size 256 and adopt the stochastic gradient descent optimizer
with a momentum of 0.9 and weight decay of 4 × 10−5.
The learning rate is decayed based on the cosine annealing
strategy from initial value 0.045. We train the unified su-
pernet with strict fairness [3] so that each operation in all
sub-blocks and each expansion rate are trained fairly.

A.3. Generator Training

After supernet training, the architecture generator is
trained for 50 epochs using batch size 128 by the Adam
optimizer with the learning rate 0.001, momentum (0.5,
0.999), and weight decay 0. The temperature τ of Gum-
bel Softmax [5] in Eq. (2) is initially set to 5.0 and annealed
by a factor of 0.95 for each epoch. The trade-off parameter
λ in Eq. (11) is set to 0.0003 in our experiment.

B. Details of Search Space
The marco-architecture of our unified supernet is shown

in Table 6.

C. More Details of Architecture Generator
A random prior is encoded into a one-hot format and then

is reshaped into the shape of architecture parameters to be
generated. The output of the architecture generator is a pa-
rameter map with size LayerSize × OperationNumber.
Motivated by generative adversarial networks, we reshape a

Table 6. Macro-architecture of the search space. MBConv 3 ×
3 denotes MobileNetV2 [6] block with kernel size 3. Column-
C denotes the number of output channel of a block. Column-N
denotes the number of the blocks. Column-S denotes the stride
of the first block when stacked for multiple blocks. Column-E
denotes the expansion rate of the blocks, and the tuples of three
values represent the lowest value, highest value, and steps between
options (low, high, steps).

Input shape Block C N S E
2242 × 3 Conv 3×3 32 1 2 -
1122 × 32 MBConv 3×3 16 1 1 1
1122 × 16 Unified Block 32 2 2 (2, 6, 1)
562 × 32 Unified Block 40 4 2 (2, 6, 1)
282 × 40 Unified Block 80 4 2 (2, 6, 1)
142 × 80 Unified Block 96 4 1 (2, 6, 1)
142 × 96 Unified Block 192 4 2 (2, 6, 1)
72 × 192 Unified Block 320 1 1 (2, 6, 1)
72 × 320 Unified Block 1280 1 1 (2, 6, 1)
72 × 1280 Avg pool - 1 1 -

1280 FC 1000 1 - -

random prior so that its shape is the same as the output map.
We then feed it to the architecture generator, where we can
apply 2D convolution with stride 1 for processing. Without
carefully tuning convolution parameters, we can ensure that
shape of the output map fits different search spaces. This
design is to make the generator easily adapt to different set-
tings. We have experimented with various structures for the
architecture generator (e.g., fully connected) and found that
convolutional layers yield reliable results.

D. More Details of Architecture Redundancy
We illustrate architecture redundancy in the left of Fig. 8

and forced sampling (FS) in the right of Fig. 8. In the four
unified blocks in Fig. 8, four depthwise convolution with
kernel size 3×3 and two skip connections are used in differ-
ent sub-blocks. However, the three situations on the left of
Fig. 8 are treated as different because of different arrange-

1



Figure 8. Illustration of architecture redundancy and forced sam-
pling (FS).

ments. With FS, we enforce arrangement of the operations
to be unique, and thus only the unified block on the right of
Fig. 8 can be sampled.

E. Visualization of Searched Architectures

We visualize SGNAS-A, SGNAS-B, and SGNAS-C in
Fig. 9. Besides, we also visualize the architectures searched
by SGNAS under different hardware constraints in Fig. 10.
It is interesting that even if the target hardware constraint
is low (e.g., 280M), the expansion rate simulated by sub-
blocks is still high in some layers (e.g., layer 1, layer 7, and
layer 19).

F. Limitation

Careful hyperparameter tuning: In SGNAS, the over-
all loss function of the architecture generator is defined in
Eq. (10). However, in our experiment, carefully tuning the
hyperparameter λ for different datasets is required to get
trade off between hardware constraints and performance.

Architecture of the architecture generator: In SG-
NAS, we manually design architecture of the architecture
generator. But we definitely believe that there is a better ar-
chitecture for the generator. It is worth further study in the
future.

References
[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In Pro-
ceedings of International Conference on Learning Represen-
tations, 2019. 1

[2] Xiangxiang Chu, Bo Zhang, Jixiang Li, Qingyuan Li, and
Ruijun Xu. Scarlet-nas: Bridging the gap between scalabil-
ity and fairness in neural architecture search. arXiv preprint
arXiv:1908.06022, 2019. 1

[3] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Rethink-
ing evaluation fairness of weight sharing neural architecture
search. arXiv preprint arXiv:1907.01845, 2019. 1

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2009. 1

[5] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-
eterization with gumbel-softmax. In Proceedings of Interna-
tional Conference on Learning Representations, 2017. 1

[6] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018. 1

[7] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen Qian,
and Changshui Zhang. Greedynas: Towards fast one-shot nas
with greedy supernet. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2020. 1

2



Figure 9. Visualization of the architectures searched by SGNAS (SGNAS-A, SGNAS-B, and SGNAS-C). ”MBE1” denotes the mobile
inverted bottleneck convolution layers with expansion rate 1. ”KX” denotes depthwise convolution with the kernel size X. The gray blocks
are predefined blocks before searching.

3



Figure 10. Visualization of the architectures search by SGNAS under different hardware constraints.

4


