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1. Dataset Statistics

Here we first summarize the detailed train/test image and

text numbers of our pre-training and downstream datasets

in Table 9. Then we provide a detailed comparisons of pre-

training dataset usage of recent VLPT works in Table 10.

We follow UNITER [1] to classify pre-training datasets

into two classes of “in-domain” and “out-of-domain”.

MSCOCO Captions (MSCOCO)[7] and Visual Genome

Dense Captions (VG) [4] are typical in-domain datasets

for many VL downstream tasks (e.g., image-text retrieval).

In contrast, Conceptual Captions [10] and SBU Cap-

tions [9] are out-of-domain datasets which are noisier than

in-domain datasets. We show the dataset usage of recent

VLPT works in Table 10. For example, VisualBERT [6],

LXMERT [12] and UNITER [1] pre-train with in-domain

datasets. Among them, UNITER [1] additionally use out-

of-domain data for model training. The ablation study of

UNITER [1] shows that the additional usage of out-of-

domain further improves performance.

In our work, we focus on in-domain datasets as they

are commonly used in many VL tasks (e.g., image-text re-

trieval) and adopted by many VLPT works (e.g., Visual-

BERT [6], LXMERT [12] and UNITER [1]). When com-

paring with UNITER, we fairly compare with its in-domain

pre-training results if they are provided. Otherwise, our “in-

domain” dataset setting is inferior to the “in-domain+out-

of-domain” pre-training setting of UNITER, and our results

are not directly comparable.

We plan to include out-of-domain data in our pre-

training data as a future work.

*Equal Contribution. This work was performed when Zhicheng Huang,

Zhaoyang Zeng and Yupan Huang were visiting Microsoft Research Asia

as research interns.

Table 9: Statistics of different datasets. Notation “*” de-

notes Karpathy split [3].

Dataset Split #Image (K) #Text (K)
VG train 105.9 472.7

COCO

train 82.8 414.1

val

restval* 30.5 152.6

val* 5.0 25.0

test* 5.0 25.0

VQA2.0

train 82.8 443.8

val 40.5 214.4

test-dev

81.4 447.8test-std

test-challenge

NLVR2
train 103.2 86.4

dev 8.2 7.0

test-P 8.1 7.0

Flickr30K

train* 29.0 145.0

val* 1.0 5.0

test* 1.0 5.0

SNLI-VE

train 29.8 529.5

val 1.0 17.9

test 1.0 17.9

2. Implementation Details

We adopt two strategies to speed up the training pro-
cedure. First, we adopt mixed-precision training to reduce

memory cost and speed up training procedure. Second, we

re-organize the input data in one mini-batch Within a mini-

batch, we only forward an image once to the visual back-

bone if it has multiple corresponding texts, while concate-

nating it with each text into cross-modal transformers. For

example, an image will be paired with four texts in each

batch during pre-training, including two positive pairs and

two negative pairs. We only apply MLM and MVM on the

positive image-text pairs.
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Table 10: Statistics on the datasets used in recent vision-and-language pre-training works.

In-domain Out-of-domain

Dataset Visual Genome [4] MSCOCO [7] Conceptual Captions [10] SBU [9]

Caption/Image Num 5,060K/101K 533K/106K 3,000K/3,000K 990K/990K

Unified VLP [13] �
ViLBERT [8] �
VLBERT [11] �

Unicoder-VL [5] � �
VisualBERT [6] �
LXMERT [12] � �
UNITER [1] � � � �

Ours � �

3. Visualization of Visual Dictionary
To show the semantic of visual dictionary (VD) items,

we visualize the image patches that are grouped in each in-

dices. We have shown two examples in the paper, and in

the supplementary material, we randomly select ten more

indices from the VD. From the visualization shown in Fig-

ure 4, we can find that each item in VD has meaningful and

consistent semantics. In other words, our model is able to

learn unified representations to represent different seman-

tics of the image even though we do not have object bound-

ing box annotations for supervision.

4. Discussion
For image-text retrieval task, the traditional ap-

proaches [2] first project an image and a text to a com-

mon representation space and then correlate their represen-

tations by late fusion. For example, the widely-used late

fusion method is calculating cosine similarity based on a

dot-product operation, which is simple and fast. In con-

trast, Transformer-based approaches early fuse the image

and text by a multi-layer Transformer to get an united rep-

resentation. The unified representation captures the deep re-

lation between an image and a text with self-attention mech-

anism, thus is able to achieve a better result than the late fu-

sion representation. However, the early fusion Transformer-

based approaches cannot produce separate representation

for images and texts, thus suffers from slow speed due to

exhaustive computation of each possible image-text com-

bination. Our model as well as other vision-language pre-

training models are based on Transformers, and the infer-

ence speed has become a bottleneck for applying these mod-

els to real-world search engines. For future works, we are

curious about how we could speedup the Transformer-based

approaches in image-text retrieval task.

References
[1] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,

Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu.

UNITER: Universal image-text representation learning. In

ECCV, pages 104–120, 2020. 1, 2

[2] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja

Fidler. VSE++: Improving visual-semantic embeddings with

hard negatives. In BMVC, 2017. 2

[3] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-

ments for generating image descriptions. In CVPR, pages

3128–3137, 2015. 1

[4] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,

Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-

tidis, Li-Jia Li, David A Shamma, et al. Visual Genome:

Connecting language and vision using crowdsourced dense

image annotations. IJCV, 123(1):32–73, 2017. 1, 2

[5] Gen Li, Nan Duan, Yuejian Fang, Daxin Jiang, and Ming

Zhou. Unicoder-VL: A universal encoder for vision and lan-

guage by cross-modal pre-training. In AAAI, pages 11336–

11344, 2019. 2

[6] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,

and Kai-Wei Chang. VisualBERT: A simple and performant

baseline for vision and language. arXiv:1908.03557, 2019.

1, 2

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV, pages 740–755, 2014. 1, 2

[8] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. ViL-

BERT: Pretraining task-agnostic visiolinguistic representa-

tions for vision-and-language tasks. In NeurIPS, pages 13–

23, 2019. 2

[9] Vicente Ordonez, Girish Kulkarni, and Tamara Berg.

Im2text: Describing images using 1 million captioned pho-

tographs. In NeurIPS, pages 1143–1151, 2011. 1, 2

[10] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu

Soricut. Conceptual captions: A cleaned, hypernymed, im-

age alt-text dataset for automatic image captioning. In ACL,

pages 2556–2565, 2018. 1, 2

[11] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu

Wei, and Jifeng Dai. VL-BERT: Pre-training of generic

visual-linguistic representations. In ICLR, 2019. 2

[12] Hao Tan and Mohit Bansal. Lxmert: Learning cross-

modality encoder representations from transformers. In

EMNLP, pages 5103–5114, 2019. 1, 2

2



Id=74 Id=183

Id=229 Id=731

Id=1162 Id=1237

Id=74 Id=183

Id=229 Id=731

Id=1162 Id=1237

3



......

Id=1346

......

Id=1654

......

Id=1716 Id=2040

......

...

Id=1346

...

Id=1654

...

Id=1716 Id=2040

...

Figure 4: Visualization of visual dictionary (VD) we have learned by SOHO. Apart from the two indices we have shown in

the paper, we randomly select another ten indices in the visual dictionary to present in this supplementary material. From

the above results we can find that, our visual dictionary is learned to group meaningful and consistent semantics of image

patches into different indices. Thus, each index can reflect an abstraction of visual semantics. [Best viewed in color.]
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