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Abstract

In this document, we provide details of our implementa-
tion complementing the original paper. Furthermore, we in-
spect the performance of our scene-specific landmarks and
the voting-by-segmentation algorithm with extended exper-
iments. Lastly, a video showing practical localization per-
formance of our framework is given.

1. Detail of Implementation
Landmark generation. SuperVoxel [6] is a 3D over-
segmentation algorithm that uniformly sets vast seeds in 3D
space and raises a patch for each pre-defined seeds. We set a
seed resolution, which can be approximately regarded as the
size of patches, in each scene and discards the seeds that do
not cover surfaces. Therefore, we can generate more land-
marks with a smaller patch size. We present the patch size
and the corresponding number of landmarks we use in the
visual localization experiment in Tab. 1. In contrast with
SfM-based visual localization frameworks relying on the
SfM map, our scene-specific landmarks are computed from
a 3D surface. We compare the SfM feature map built by

(a) SfMMap (b) 3D Surface

Figure 1. Comparison of (a) SfM feature map and (b) TSDF sur-
face.

COLMAP [9] and the 3D surface we use reconstructed by

Algorithm 1 Landmarks from Votes
INPUT:
pi: Pixel coordinates in current patch label
di: Pixel votes at pi

l̂
(0)
j : Initial landmark of landmark j from RANSAC-based

approach [7]
θmin: Threshold of minimum neighbor pixels
θdist: Threshold of neighbor pixel distance
εstep: Epsilon of landmark coordinate change
OUTPUT:
l̂bestj : Best voting landmark
bvalid: Validity of the landmark

l̂bestj ← l̂
(0)
j

bvalid ← true
t← 1
while t < Max Iteration do
S = {‖pi − l̂

(t−1)
j ‖2 < θdist}

if |S| < θmin then
bvalid ← false
break

end if
for all pi ∈ S do

Compute normal of voting map ni ←
[
0 −1
1 0

]
di

end for
l̂
(t)
j ←

(∑
S nin

>
i

)−1 (∑
S nin

>
i pi

)
if ||̂l(t)j − l̂

(t−1)
j ||2 < εstep then

break
end if
l̂bestj ← l̂

(t)
j

t← t+ 1
end while



7Scenes Cambridge Landmarks
Ches. Fire Head. Offi. Pump. Kitc. Stair. College Court Hospital Shop Church

Size 15cm 10cm 5cm 15cm 15cm 15cm 10cm 2.0m 3.0m 1.5m 0.8m 1.2m
Num. 4330 5052 10058 4982 4702 6402 13878 4081 2799 2940 4657 4141

Table 1. The number of landmarks in the visual localization experiments.

Figure 2. Scene-specific landmarks vs. Reg vs. HSC-Net in individual scenes.

Figure 3. The reconstructed map (gray points) and camera trajec-
tory (purple) of Street in the Cambridge Landmarks Dataset.

KinectFusion [5] in Fig. 1. The SfM feature map is typi-
cally messy and not accurate enough even in a static indoor
scene, while the 3D surface is more tidy and accurate, which
benefits the following localization.
VS-Net details. We use the DeepLabv3 [1] as the backbone
for landmark segmentation and add a decoder for pixel-wise
voting. Our models are trained by Adam optimizer with a
learning rate of 1e-4, a weight decay of 5e-4, and a batch
size of 2. The images are respectively scaled to 640 × 480
and 960 × 540 in the 7-Scenes dataset and the Cambridge
Landmarks dataset. The length of prototype embedding

used in the 7-Scenes dataset and the Cambridge Landmarks
dataset are 24 and 64. k is set as 2 in the kNN search of
prototype-based triplet loss. We use affine transformation
data augmentation in training with the same parameter set-
tings in hsc-net [3] on both of these datasets. We elabo-
rate the EM-like landmark location refinement algorithm in
Alg. 1.
Case study of Street. There are six scenes in the Cam-
bridge Landmarks Dataset. Following previous works [3],
we only compare VS-Net with others in five scenes except
Street because the provided poses in Street is not reason-
able. We present a part of the 3D map and the camera tra-
jectory computed from official ground-truth camera poses
of the Street in Fig. 3. The cameras within 0.5m to the wall
are rendered as green. As we can see, the camera trajectory
drifts seriously.

2. Extended Experiments
Scene-specific landmarks vs. Reg vs. HSC-Net in indi-
vidual scenes. We compare scene-specific landmarks and
scene coordinates in individual scenes. Reg [3] is the base-
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Figure 4. Feature matching with fundamental matrix based RANSAC.

line in scene coordinate regression and HSC-Net [3] is the
state-of-the-art scene coordinate regression method. We
compare VS-Net with them to show the superiority of our
proposed scene-specific landmarks. In addition to the pose
accuracy metrics, we measure the robustness and accuracy
of correspondences by two other metrics: the outlier ratio
and mean reprojection error of inliers. We compute the re-
projection error of scene-specific landmarks and scene coor-
dinates with ground-truth poses. The established 2D-to-3D
correspondences whose reprojection errors are lower than
10 pixels are regarded as inliers, and the others are treated
as outleirs. In Fig. 2, the mean inlier reprojection error
and outlier ratio of scene-specific landmarks are concen-
trated on lower error intervals, which means that the accu-

racy and robustness of scene-specific landmarks are better
than scene coordinates in most query images. The number
of poses computed from scene-specific landmarks consis-
tently surpasses scene coordinates at the low threshold in
both positional error and angular error, which indicates that
scene-specific landmarks exhibit better pose estimation per-
formance in most scenes.

Fundamental-matrix based matching. In the view of
feature-based visual localization, landmark labels can be re-
garded as the feature descriptors that associate two detected
landmarks. To show that VS-Net generates more robust cor-
respondences in a specified scene, we compare our land-
mark association with SIFT [4], D2-Net [2] feature match-
ing in Figs. 4. All the matches have been filtered by epipolar
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geometry with RANSAC. R2D2 [8] is not able to figure out
more than three correspondences, which can not be applied
to the following fundamental matrix estimation, so we do
not present it in the figures. The images are extracted from
the Seq-3 in the 7-Scenes chess scene, which is a test se-
quence. The image pairs are constituted by the first frame
and a frame sampled from the subsequent frames. Even af-
ter RANSAC, there are many erroneous matches in SIFT
and D2-Net when the baseline is large because the textures
are locally similar. We highlight some of them with red
circles. By contrast, our landmark association keeps good
robustness and accuracy under such a significant viewpoint
changing.
Visual localization in practical environments We provide
a supplementary video that qualitatively demonstrates the
performance of VS-Net in severe practical environments.
The Cambridge Landmarks dataset provides some chal-
lenging images and videos while they are not contained in
the test set. We compute the camera poses of the images
through the proposed visual localization framework and
project the model into the views of the original sequences
for performance evaluation. The successfully detected and
associated landmarks are visualized with red crosses for
better understanding. The results are presented in the sup-
plementary video, which indicates the prominent robustness
of our framework.
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