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In this supplementary material, we introduce our 3D
scene flow color coding scheme and provide details on our
refined backbone architecture, self-supervised loss func-
tion, implementation, and computational cost. Then, we
demonstrate additional results on temporal consistency,
qualitative comparisons with the direct two-frame baseline
(Self-Mono-SF [23]), and more experimental results for the
generalization to other datasets. Lastly, we provide prelim-
inary results of our model trained on a vast amount of unla-
beled web videos in a self-supervised manner. We discuss
the results as well as a current limitation of our method.

A. Scene Flow Color Coding
For visualizing 3D scene flow in 2D image coordinates,

we use the CIE-LAB color space, as visualized in Fig. 12.

B. Refined Backbone Architecture
We provide a more in-depth analysis of our refined back-

bone two-frame architecture introduced in Sec. 3.1 of the
main paper. We first present a simple empirical study of
key findings from [28] and discuss which key factors can
be carried over to monocular scene flow estimation. Af-
terward, we demonstrate an accuracy analysis and the im-
proved training stability of our refined architecture by dis-
carding the context network and splitting the decoder.
Empirical study on key findings from [28]. Jon-
schkowski et al. [28] provide a systematical analysis of the
key design factors for highly accurate self-supervised opti-
cal flow. We conduct an empirical study on which of their
key findings are beneficial in the context of monocular 3D
scene flow. We report results on KITTI Scene Flow Train-
ing [43, 44] using the scene flow metrics (cf . Sec. 4.2 in the
main paper).

Table 8 provides our empirical study on adopting each
key factor on top of our baseline and reports the scene flow
accuracy. We follow the training setup from [23]. We first
apply cost volume normalization (CV. Norm.) on the model
from [23] without the context network (Cont. Net.).1 Cost

1We use the model without the context network for more stable training,
see main paper.
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Figure 12. 3D scene flow color coding scheme using the CIE-
LAB color space: Each figure shows a sliced sphere along each
plane for ease of visualization.

Model D1-all D2-all Fl-all SF-all

[23] − Cont. Net. 34.24 37.32 25.06 50.49
[23] − Cont. Net. + CV. Norm. (Baseline) 31.91 35.31 24.80 48.29

Applying each row on top of the baseline above:

Census loss 32.52 34.54 21.79 45.61
Using one less pyramid level 33.68 35.03 23.98 47.77
Data distillation 34.62 35.74 24.09 48.11
Using 640× 640 resolution 33.12 34.59 22.43 48.28
Level dropout (not converged)

Table 8. An empirical study of the key findings from [28]: We
take [23] after discarding the context network (Cont. Net.) and ap-
plying the cost volume normalization (CV. Norm.) as the baseline
network. Then we apply each key factor to the baseline and com-
pare the scene flow accuracy. Numbers colored in blue outperform
the baseline accuracy.

volume normalization clearly improves the accuracy on all
metrics, up to 4.4% (relative improvement) in terms of the
scene flow accuracy. We choose this model as the baseline
and conduct further empirical study on top of it.
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(a) Training loss, original train split [23]
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(b) Scene flow outlier rate, original train split [23]
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(c) Training loss, our train split
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(d) Scene flow outlier rate, our train split

Figure 13. An analysis of training stability: We compare the training loss and the accuracy of three models (i.e., direct baseline [23], [23]
without context network, and [23] without context network and with split decoder), training on two different splits (i.e. the original training
split from [23] and our multi-frame train split). Discarding the context network offers more stable, faster convergence of the accuracy on
both splits. Further applying the split decoder improves the accuracy.

Model D1-all D2-all Fl-all SF-all

Forward-backward consistency 27.99 30.51 20.35 40.80
Using disocclusion 27.33 30.44 18.92 39.82

Table 9. Comparison of different occlusion estimation strate-
gies: Using disocclusion produces more accurate scene flow esti-
mates than using a forward-backward consistency check.

We find the census loss and using one less pyramid level
to be beneficial for the monocular scene flow setup as well.
On the other hand, using data distillation or a 640 × 640
pixel resolution only brings marginal improvements, but re-
quires a much longer training time; thus we decide not to
apply them here. We observe that using a square resolution
improves the optical flow accuracy but hurts the disparity
accuracy; this offsets the improvement in the end. When us-
ing level dropout, which randomly skips some pyramid lev-
els when training, training unfortunately did not converge.

In Table 9, we also compare different occlusion estima-
tion techniques, specifically disocclusion detection and the
forward-backward consistency check as described in [28].
We use our final model with multi-frame estimation for the
study. Unlike the conclusion from [28], we find that using
disocclusion information for occlusion detection produces
more accurate scene flow than using a forward-backward
consistency check.

Improved training stability. As discussed in Sec. 3.1 of
the main paper, discarding the context network and split-
ting the decoder improve the training stability with faster

convergence. Fig. 13 plots the training loss and the scene
flow outlier rate of the direct baseline [23], the baseline
without the context network, and additionally applying our
split decoder design. We demonstrate the results on using
two different train splits, the original split from [23] and our
multi-frame train split (see Sec. 4.1).

We make the following main observations: (i) The direct
baseline [23] shows a significant accuracy drop when using
our train split. (ii) Discarding the context network resolves
the issue and offers more stable, faster convergence regard-
ing the accuracy on both train splits. (iii) After applying our
split decoder design, the model further improves the accu-
racy, showing more stable and faster convergence regarding
the training loss on both train splits.

Note that a lower training loss does not always directly
translate to better accuracy, since the model optimizes the
self-supervised proxy loss. For this reason we also plot the
scene flow outlier rate (on KITTI Scene Flow Training).

C. Self-Supervised Loss

We provide further details on the self-supervised proxy
loss introduced in Sec. 3.3 in the main paper. The weighting
constant λsf in Eq. (2) in the main paper is calculated at
every iteration step to make the scene flow loss Lsf equal to
the disparity loss Ld, which previous work [23] empirically
found to be better than using a fixed constant.

Disparity loss. Following Godard et al. [12, 13], we use the
right view of a stereo image pair for the guidance of dispar-



ity estimation at training time; the second view is not used
at test time. The disparity loss consists of a photometric
loss Ld,ph and a smoothness loss Ld,sm with regularization
constant λd,sm = 0.1,

Ld = Ld,ph + λd,smLd,sm (4a)
with

Ld,ph = ρcensus
(
It, Ĩ

disp
t ,Odisp

t

)
. (4b)

The photometric loss Ld,ph in Eq. (4b) penalizes the pho-
tometric difference between the left view It and the syn-
thesized left view Ĩdisp

t , obtained from the output dispar-
ity dt and the given right view Ir

t via backward warping
[81]. To calculate the photometric difference, we use our
new occlusion-aware census loss ρcensus in Eq. (3a) in the
main paper. As in [23], we obtain the disparity occlusion
mask Odisp

t from forward-warping the right disparity map
by inputting the right view Ir

t into the network.
We use an edge-aware 2nd-order smoothness term [23,

28] to define the disparity smoothness Ld,sm in Eq. (4a).

Ld,sm =
1

N

∑
p

∑
i∈{x,y}

∣∣∇2
idt(p)

∣∣ · e−β‖∇iIt(p)‖1 , (5)

with β = 150, divided by the number of pixels N [28].
Scene flow loss. The scene flow loss consists of three terms
[23]: a photometric loss Lsf,ph, a 3D point reconstruction
loss Lsf,pt, and a scene flow smoothness loss Lsf,sm,

Lsf = Lsf,ph + λsf,ptLsf,pt + λsf,smLsf,sm, (6a)
with

Lsf,ph = ρcensus
(
It, Ĩ

sf
t ,O

sf
t

)
, (6b)

and regularization weights λsf,pt = 0.2, λsf,sm = 1000.
The scene flow photometric loss in Eq. (6b) penalizes

the photometric difference between the reference image It
and the synthesized reference image Ĩsf

t , obtained from the
camera intrinsics K, estimated disparity dt, and the scene
flow sf

t (cf . Fig. 4a in [23]). Here we also apply our novel
occlusion-aware census transform ρcensus from Eq. (3a). The
scene flow occlusion mask Osf

t is obtained by the disocclu-
sion from the backward scene flow sb

t+1.
The 3D reconstruction lossLsf,pt in Eq. (6a) penalizes the

Euclidean distance between the corresponding 3D points,
P′t and P′t+1, however only for visible pixels:

Lsf,pt =
1∑

q O
sf
t (q)

∑
p

Osf
t (p) ·

∥∥P′t −P′t+1

∥∥
2∥∥Pt∥∥2 (7a)

with

P′t = d̂t(p) ·K−1p+ sf
t(p) (7b)

P′t+1 = d̂t+1(p
′) ·K−1p′, (7c)

and

p′ = K
(
d̂t(p) ·K−1p+ sf

t(p)
)
, (7d)

where p′ is the corresponding pixel of p given the scene
flow and disparity estimate. d̂t and d̂t+1 are the depth maps
at time t and t+1 respectively. The depth d̂ is trivally con-
verted from the disparity estimates given the camera focal
length ffocal and the baseline of the stereo rig b, specifically
d̂ = ffocal · b/d. Here, we assume that the camera focal
length and the stereo baseline is given so that the network
outputs disparity (or depth) on a certain, fixed scale.

The loss is normalized by the 3D distance of each point
Pt to the camera to penalize the relative distance to camera.

The same edge-aware smoothness loss is applied to 3D
scene flow, yielding Lsf,sm in Eq. (6a), also normalized by
its 3D distance to camera:

Lsf,sm =
1

N

∑
p

∑
i∈{x,y}

∣∣∇2
i s

f
t(p)

∣∣ · e−β‖∇iIt(p)‖1∥∥Pt∥∥2 ,

(8)
with β = 150 and N being the number of pixels.

D. Implementation Details
As briefly discussed in Sec. 4.1 of the main paper, we

use the augmentation scheme and training configuration
suggested by [23]. The geometric augmentation consists
of horizontal flips (with 50% probability), random scal-
ing, cropping, and resizing into 256 × 832 pixels. Then,
a photometric augmentation is applied with 50% probabil-
ity, consisting of gamma adjustment, random brightness and
color changes. The augmentation parameters are uniformly
sampled from the ranges given in Table 10. We use the
same augmentation parameters for all consecutive frames
included in the same mini-batch.

For training, we use the Adam optimizer [82] with β1 =
0.9 and β2 = 0.999. We do not apply weight decay be-
cause we found that it harms the accuracy. The learning
rate schedule from [23] is used. That is, for self-supervised
training for 400k iterations, the initial learning rate starts at
2× 10−4, being halved at 150k, 250k, 300k, and 350k iter-
ation steps. Afterwards, for semi-supervised fine-tuning for
45k iterations, the learning rate starts from 4× 10−5, being
halved at 10k, 20k, 30k, 35k, and 40k iteration steps.

Augmentation type Sampling range

Random scaling [0.93, 1.0]
Random cropping [−3.5%, 3.5%]
Gamma adjustment [0.8, 1.2]
Brightness change multiplication factor [0.5, 2.0]
Color change multiplication factor [0.8, 1.2]

Table 10. Augmentation parameters: The augmentation param-
eters are uniformly sampled from the given sampling ranges.



(a) Overlayed input images (b) Ours (c) Direct baseline [23]

Figure 14. Qualitative comparison of temporal consistency: Each scene shows (a) overlayed input images and scene flow difference
maps of (b) our method, and (c) the direct two-frame baseline of [23], visualized using optical flow color coding. Our method provides
more temporally consistent estimates near moving objects and out-of-bound regions.

Method Self-Mono-SF [23] Multi-Mono-SF (ours)

AEPE 0.0969 0.0911

Table 11. Temporal consistency evaluation: Our method shows
lower average end-point error (AEPE) between two temporally
consecutive estimates.

E. Computational Cost and Training Time
Our model takes 153.1G FLOPS of computation per

frame pair, with a model size of 7.537M parameters. It re-
quires only one GPU to train, consumes only 4.89G GPU
memory, and trains for 4.5 days (on a single NVIDIA GTX
1080 Ti GPU).

F. Temporal Consistency
We provide an additional analysis of the temporal consis-

tency, continuing from Sec. 4.4 in the main paper. Fig. 14
visualizes additional comparisons of the scene flow dif-
ference map, comparing to the direct two-frame baseline
[23]. Our model produces visibly more temporally consis-
tent scene flow, especially near moving objects and out-of-
bound regions.

In Table 11, we also quantitatively evaluate the temporal
consistency on KITTI Scene Flow Training by calculating
the average Euclidean distance of two corresponding scene
flow vectors between the two temporally consecutive esti-
mates. The corresponding scene flow is found using the pro-
vided ground truth labels. While this is not an ideal way for
measuring temporal consistency, it shows how much each
corresponding scene flow vector changes over time, assum-
ing constant velocity. Comparing to the direct two-frame
baseline [23], our method gives lower AEPE between two
temporally corresponding scene flow vectors, which indi-
cates more temporally consistent estimates.

Dataset Optical flow EPE Scene flow EPE

Driving 3.6613 0.8845
Monkaa 12.8881 4.2982

Table 12. Scene flow accuracy on Driving and Monkaa datasets
[40] using the End-Point Error (EPE) metric: The accuracy of
our model is generally low in the synthetic domain but is better on
Driving than on Monkaa.

G. Qualitative Comparison
In Fig. 15, we provide additional qualitative comparisons

with the direct two-frame baseline [23] as in Sec. 4.5 in
the main paper. Supporting the same conclusion as in the
main paper, our approach produces more accurate 3D scene
flow on out-of-bound regions, foreground objects, and pla-
nar road surfaces.

H. Generalization to Other Datasets
Continuing from Sec. 4.5 of the main paper, we provide

more qualitative results on the nuScenes [8], DAVIS [49],
Driving and Monkaa [40] datasets. Fig. 16 provides both
successful cases and failure cases on those three datasets,
respectively. Our model, trained only on the KITTI dataset,
generalizes well to the nuScenes dataset [8], which is rea-
sonably close in domain (i.e., driving scenes). However,
there exist some failure cases with inaccurate depth estima-
tion as well as occasional artifacts on the image boundary.
On the DAVIS [49] dataset, our model generalizes surpris-
ingly well to completely unseen domains, yet depth estima-
tion on unseen objects (e.g., horse, cat) can sometimes fail.

In the synthetic domain (Driving and Monkaa [40]
datasets), however, our model demonstrates less accurate
results, as can be expected. Typical failure cases are again
inaccurate depth estimation on completely unseen synthetic
objects or reflective road surfaces. In Table 12, we eval-



� Both methods correct � Ours is correct, [23] is not � [23] is correct, ours is not � Both failed

(a) Overlayed input images (b) Disparity error map (c) Disparity change error map (d) Optical flow error map (e) Scene flow error map

Figure 15. Qualitative comparison with the direct baseline of [23]: Each scene shows (a) overlayed input images and error maps for
(b) disparity, (c) disparity change, (d) optical flow, and (e) scene flow. Please refer to the color code above the images.

uate the scene flow accuracy of our model on the Driving
and Monkaa [40] datasets, using the End-Point-Error (EPE)
metric. Though the accuracy is quite low in general, the ac-
curacy on Driving is much better than that on Monkaa as
can be expected.

These overall results suggest that the accuracy of our
self-supervised model depends on the training domain as
well as the presence of target objects in the training dataset.
From this observation, we can conclude that better gener-
alization requires to train the model on a dataset with both
diverse domains and objects.

I. Self-Supervised Learning in the Wild
Through self-supervised learning, our method can in

principle leverage vast amounts of unlabeled stereo web
videos. However unlike training on a single, calibrated
dataset (e.g., KITTI), this comes with several new techni-
cal challenges. Each stereo video is captured with differ-
ent camera intrinsics and stereo configurations, whose val-
ues are even unknown. Without knowing them, the self-
supervised loss in Eq. (2) in the main paper cannot be di-
rectly applied because it assumes a fixed (or given) focal
length and stereo baseline. We provide preliminary experi-
ments to assess the feasibility of this scenario.

To train the network despite these unknowns, we first
assume all videos share the same focal length. Then, we
normalize the output disparity (say, dnorm) to be in a fixed,
normalized scale and use it for the scene flow loss. For
the disparity loss, we further linearly transform the disparity
dnorm to match the actual disparity scale of each given stereo

input:
dactual = ascale · dnorm + bscale. (9)

To obtain the coefficients ascale and bscale, we estimate opti-
cal flow between the stereo pair using our network, take the
horizontal flow as pseudo disparity dpseudo, and use the least
squares between the pseudo disparity dpseudo and the nor-
malized disparity dnorm. Though our network now outputs
disparity and scene flow on a normalized scale, it is still able
to estimate optical flow (by projecting scene flow to image
coordinates) on the correct scale due to being supervised by
the 2D view-synthesis proxy loss.

For our preliminary experiments, we use the WSVD
dataset [83], which is a collection of stereo videos from
YouTube, for training and test on the DAVIS [49] dataset.
Training dataset preparation. When training on such di-
verse data collected on the web, it is important to make sure
that the dataset is free of outliers. For preparing the training
data, we carefully pre-process the WVSD dataset by first
discarding videos with low resolution, poor image quality,
texts, or watermarks. We further discard videos having ver-
tical disparity, lens distortion, and narrow stereo baselines
for better stereo supervision. Then, we check every frame
and remove black-colored edges on the image boundaries,
if applicable. Also, we find that many videos contain static
scenes; thus we sample every 4th frame and 2nd sequence
for having more dynamic motion in the training sequences.
This pre-processing step, in the end, results in 58k training
images from about 1.5M raw frames. Given the pre-trained
model on KITTI, we further train the model on this curated
dataset for 300k iteration steps.
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(a) Overlayed input images (b) Depth map (c) Scene flow visualization (a) Overlayed input images (b) Depth map (c) Scene flow visualization

Figure 16. Generalization to nuScenes, DAVIS, Driving, and Monkaa datasets: Each scene shows (a) overlayed input images, (b) depth,
and (c) 3D scene flow visualization. The left side demonstrates good generalization of our model to nuScenes, DAVIS, Driving, and Monkaa
datasets. Nonetheless, failure cases do exist, provided on the right side and highlighted with dashed gray squares. A typical failure mode
is inaccurate depth estimation of foreground objects that are not seen in the training set as well as reflective road surfaces.

Result and discussion. Fig. 17 demonstrates the test re-
sult on the DAVIS [49] dataset. Comparing to our KITTI-
trained model (cf . Fig. 16), our model trained on the WSVD
dataset [83] is able to correctly estimate depth on diverse
scenes from the DAVIS [49] dataset. This also confirms our
observation from the generalization analysis in Appendix H
that better generalization can be achieved by training on a
dataset with diverse scenes and objects.

However, our model unfortunately fails to correctly esti-
mate scene flow: the network outputs z components of the
scene flow that are nearly zero and only estimates x and y
components (refer the scene flow color coding in Fig. 12).
We also observe that the 3D reconstruction loss Lsf,pt in
Eq. (7a) does not converge at all. We conjecture that the
failure comes from the issue that the model does not es-

timate scale-consistent depth but instead normalized depth
for each frame, which makes it difficult to determine the
correct z component of the scene flow for each sequence.
This connects to a current limitation that our approach re-
quires a fixed (or given) focal length and a stereo baseline
for training. However, we expect that this can be overcome
once the network is able to output scale-consistent depth
across sequences or videos while being trained on videos
with diverse camera settings. We leave this for future work.
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