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Supplementary Note 1. Image Formation

Suppl. Fig. 1: Photon Detection Timeline: (a) The photon timeline shows the random variables used in the derivation of our
photon flux estimator. Xi’s denote the photon arrival time with respect to the start of the exposure at t = 0 and Yi’s denote
the ith time-of-darkness. (b) There are two possibilities for the final dead-time window after the last photon detection. In
high photon flux scenarios, the final dead-time ends after the end of the exposure time (XNT

+τd > T ) with high probability.

Consider an IP-SPAD sensor pixel with quantum efficiency q exposed to a photon flux of Φ photons/second. Photon
arrivals follow a Poisson process, so inter-photon times follow an exponential distribution with rate qΦ. After a detection
event the IP-SPAD is unable to detect photons for a period of τd. Because of the memoryless property of a Poisson process, the
arrival time of a photon after the end of a dead-time window (called the time-of-darkness), follows an exponential distribution
with rate qΦ. The probability that no photons are detected in the exposure time T is equal to

�∞
T

qΦe−qΦtdt = e−qΦT .

Let the first time-of-darkness be denoted by Y1. If no photons are detected, we define Y1 := T . If Y1 < T it follows an
exponential distribution. Therefore, the probability density function of Y1 can be written as:

Y1∼fY1(t) =





qΦe−qΦt for 0 < t < T

e−qΦT δ(t− T ) for t = T

0 otherwise,
(S1)

where δ is the Dirac delta function.
Now consider Y2, the second time-of-darkness. Y2 is non-zero if and only if Y1 �= T (to be the second, there must be

a first). If the second photon is detected, Y2 will be exponentially distributed. But the exposure time interval has shrunk
because a time interval of Y1 + τd has elapsed due to the first photon detection. We define the remaining exposure time
T2 = max(0, T − Y1 − τd), where the max() function ensures T2 is non-negative. Then the probability distribution of Y2

conditioned on Y1 will be given by replacing T for T2 in Eq. (S1). More generally, the conditional distribution of Yi can be
written as:

Yi ∼ fYi
(Yi|Y1 . . . Yi−1) =





qΦe−qΦYi for 0 < Yi < Ti

e−qΦTiδ(t− Ti) for Yi = Ti

0 otherwise,
(S2)
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where,

T1 = T

Ti = max(0, Ti−1 − Yi−1 − τd))

= max


0, T −

i−1�

j=1

(Yj + τd)


 . (S3)

The Ti’s model the fact that the effective exposure time for the ith photon shrinks due to preceding photon detections.
Note if Yi = Ti then no ith photon is detected and Yi+1 = Ti+1 = 0. Note that the Xi in the main text are related to Yi by
Xi −Xi−1 − τd =: Yi for i ≥ 2 and X1 = Y1. Suppl. Fig. 1(a) shows Xi and Yi on a photon timeline.

Maximum Likelihood Flux Estimator

For a fixed exposure time T , the maximum number of possible photon detections is L =
�
T
τd

�
. Let N be the number of

detected photons, then YN+1 will be the last possibly non-zero time-of-darkness, and YN+2 . . . YL = 0 with probability 1.
The log-likelihood of the unknown flux value given the set of time-of-darkness measurements Y1 . . . YL is given by:

log l(qΦ;Y1, . . . , YL) = log

�
L�

i=1

fYi
(Yi|Y1 . . . Yi−1)

�

= log

�
fYN+1

(YN+1|Y1 . . . YN )

N�

i=1

fYi
(Yi|Y1 . . . Yi−1)

�

= log

�
e−qΦTN+1

N�

i=1

qΦ e−qΦYi

�

= −qΦ

�
TN+1 +

N�

i=1

Yi

�
+N log qΦ

= −qΦ

�
max

�
0, T −

N�

i=1

Yi − τd

�
+

N�

i=1

Yi

�
+N log qΦ

= −qΦ max

�
N�

i=1

Yi, T −Nτd

�
+N log qΦ. (S4)

We find the maximum likelihood estimate, �Φ, by setting the derivative of Eq.(S4) to zero and solving for Φ:

−qmax

�
N�

i=1

Yi, T −Nτd

�
+

N

�Φ
= 0, (S5)

which gives:

�Φ =
N

qmax
��N

n=1 Yi, T −Nτd

� . (S6)

The max() function can be thought of as selecting the time-of-darkness based on whether or not the final dead-time
window ends after t = T , see Suppl. Fig. 1(b). In practice the beginning and end of the exposure time may not be known
precisely, introducing uncertainty in X1 and T . Because of this we instead use an approximation:

�Φ =
N − 1

q
�N

n=2 Yi

. (S7)

Plugging in Yi = Xi −Xi−1 − τd gives Eq. (2) in the main text.



Flux Estimator Variance

Let N be the number of photons detected in an exposure time T . Using the law of large numbers for renewal processes
we find the expectation and the variance of N to be:

E[N ] =
qΦ(T + τd)

1 + qΦτd
(S8)

Var[N ] =
qΦ(T + τd)

(1 + qΦτd)3
(S9)

In the following derivation we will assume N is large enough that it can be assumed to be constant for a given T . This
holds, for example, when Φ � 1

T . This assumption also allows us to approximate Yi’s as i.i.d. shifted exponential random
variables. We will consider the estimator in Eq. (S7) where the sum in the denominator is given by SNT

= Y2 + Y3 + ...YN

and letting NT = N − 1. The final photon timestamp SNT
is the sum of exponential random variables and follows a gamma

distribution:

SNT
∼ fSNT

(t) =

�
(qΦ)NT tNT −1e−qΦt

(NT−1)! for t ≥ 0

0 otherwise.
(S10)

The mean of �Φ can be computed as:

E
�

NT

qSNT

�
=

NT

q
E
�

1

SNT

�

=
NT

q

� ∞

0

(qΦ)NT tNT−1e−qΦt

t(NT − 1)!
dt

=
NT

q

qφ

NT − 1

� ∞

0

(qΦ)NT−1tNT−2e−qΦt

(NT − 2)!
dt

=
NT

NT − 1
Φ (S11)

where the last line comes from the recognizing the argument of the integral as the p.d.f. for a gamma distribution and for
large NT , NT

NT−1 ≈ 1.

The second moment of �Φ is given by:

E

��
NT

qSNT

�2
�
=

N2
T

q2
E
�

1

S2
NT

�

=
N2

T

q2

� ∞

0

(qΦ)NT tNT−1e−qΦt

t2(NT − 1)!
dt

=
(qΦ)2N2

T

q2(NT − 1)(NT − 2)

� ∞

0

(qΦ)NT−2tNT−3e−qΦt

(NT − 3)!
dt

=
Φ2N2

T

(NT − 1)(NT − 2)
(S12)



This expression is valid for NT > 2. The variance of �Φ is given by:

Var
�

NT

qSNT

�
= Φ2 N2

T

(NT − 2)(NT − 1)
− N2

T

(NT − 1)2
Φ2

= Φ2 N2
T

(NT − 2)(NT − 1)2

≈ Φ2 1

NT
(S13)

= Φ2 qΦτd + 1

qΦ(T + τd)
(S14)

≈ Φ
qΦτd + 1

qT
(S15)

where we replace NT with its mean value. The last line follows if we assume T � τd. Finally, the SNR is given by:

SNR = 20 log10
Φ�

Var[ NT

qSNT
]

= 10 log10
qΦT

qΦτd + 1
(S16)

We make the following observations about our estimator �Φ:

• At high flux, when NT is large enough, Eq. (S11) reduces to E[�Φ] = Φ, i.e. our estimator is unbiased.

• Unlike [25] which only uses photon counts NT , our derivation explicitly accounts for individual inter-photon timing
information captured in SNT

.

• As Φ → ∞, SNR → 10 log10(
T
τd
). So at high flux the SNR will flatten out to a constant independent of the true flux Φ.

In practice, the SNR drops at high flux due to time quantization, discussed next in Supplementary Note 2.



Supplementary Note 2. Time Quantization
Consider an IP-SPAD with quantum efficiency q, dead time τd, and time quantization Δ that detects photons over exposure

time T . To match our hardware prototype, the start of the dead time window is not quantized and time stamps are quantized
by Δ. The quantization noise variance term derived in previous work [25, 4] that relies on a counts-only measurement model
is given by:

Vcount-quantization =
(1 + qΦτd)

4

12q2T 2
. (S17)

We derive a modified quantization noise variance expression by modifying this counts-only expression to account for two
key insights gained from extensive simulations of SNR plots for our timing-based IP-SPAD flux estimator. First, we note
that the timing-based IP-SPAD flux estimator follows a similar SNR curve as the counts-based PF-SPAD flux estimator when
Δ = τd. Second, the rate at which the SNR drop off moves slows after Δ exceeds τd. In this way we propose a new time
quantization term:

Vtime-quantization =
(1 + qΦτd + qΦΔ)2(1 + qφΔ)2

12q2T 2
. (S18)

Note we break the quartic term from Eq. (S17) into two quadratic terms. The two quadratic terms strike a balance between
quantization due to counts and timing. If Δ = 0 then Vtime quantization is an order 2 polynomial with respect to Φ which leads
to a constant SNR at high flux. Also note if Δ = τd the time quantization term is roughly equal to the counts quantization
term. We found this expression matches simulated IP-SPAD SNR curves for a range of dead-times and exposure times.



Supplementary Note 3. IP-SPAD Imaging with Low Photon Counts
The scene brightness estimator (Eq. (2)) requires the IP-SPAD pixel to capture at least two photons; It does not make sense

to talk about “inter-photon” times with only one photon. The situation where an IP-SPAD pixel captures only one incident
photon timestamp can be thought of as an extreme limiting case of passive inter-photon imaging under low illumination.

Intuitively, we can reconstruct an image from a single photon timestamp per pixel by simply computing the reciprocal of
the first photon timestamp at each pixel. Brighter scene points should have a smaller first-photon timestamp (on average)
because, with high probability, a photon will be detected almost immediately after the pixel starts collecting light. In this
supplementary note we show that the conditional distribution of this first photon timestamp (conditioned on there being at
least one photon detection) is a uniform random variable:

{Y1|Y1 ≤ T} ∼ U [0, T ].

when operating under low incident photon flux. This implies that timestamps provide no additional information beyond
merely the fact that at least one photon was detected. We must, therefore, relax the requirement of a constant exposure time
and allow each pixel to capture at least one photon by allowing variable exposure times per pixel. When operated this way,
first-photon timestamps do carry useful information about the scene brightness. The estimate of the scene pixel brightness is
given by �Φ = 1/q Yi.

When the total number of photons is extremely small, the information contained in the timestamp data is extremely noisy.
We leverage spatial-priors-based image denoising techniques that have been developed for conventional images, and adapt
them denoising these noisy IP-SPAD images. Coupled with the inherent sensitivity of SPADs, this enables us to reconstruct
intensity images with just a single photon per pixel [26].

In this section we show that for passive imaging in the low photon flux regime with a constant exposure time per pixel, the
timestamp of the first arriving photon is a uniform random variable and hence, carries no useful information about the true
photon flux. If we drop the constant exposure time constraint and instead operate in a regime where each pixel is allowed
to wait until the first photon is captured (random exposure time per pixel), then the first-photon timestamps carry useful
information about the flux, albeit noisy.

Supplementary Note 3.1. When Do Timestamps Carry Useful Information?

Let us assume an IP-SPAD pixel operating with a fixed exposure time T is observing a scene point with photon flux Φ.
We assume that the photon flux is low enough so that the pixel captures at most one photon during this exposure time. The
(random) first-photon arrival time is denoted by Y1 as shown in Suppl. Fig. 2. We would like to know if the first photon
time-of-arrival carries useful information about Φ.

Suppl. Fig. 2: We capture the first arriving photon and record its arrival time in a fixed exposure time T. Note that in the low
photon flux regime ΦT � 1, so there is a high probability that zero photons are detected in the time interval [0, T ].

We derive the probability distribution of Y1, conditioning on Y1 ≤ T . For any t > 0,

P (Y1 ≤ t|Y1 ≤ T ) =
P (Y1 ≤ t ∩ Y1 ≤ T )

P (Y1 ≤ T )
(S19)

=
P (Y1 ≤ t)

P (Y1 ≤ T )
(S20)

=
1− e−Φt

1− e−ΦT
(S21)

where Eq. (S19) follows from Bayes’s rule, Eq. (S20) assumes t ≤ T (otherwise the answer is 1, trivially) and Eq. (S21) is
obtained by plugging in the c.d.f. of Y1 ∼ Exp(Φ).



Due to the low flux assumption, Φ � 1
T . Then Φt ≤ ΦT � 1 and we can approximate 1 − e−ΦT ≈ ΦT and

1− e−Φt ≈ Φt. This gives

P (Y1 ≤ t|Y1 ≤ T ) =
t

T
(S22)

which is the c.d.f. of a uniform random variable. This implies that, in the low photon flux regime the arrival time distribution
converges weakly to a uniform random variable:

{Y1|Y1 ≤ T} D→ U [0, T ].

For low illumination conditions, we drop the requirement of a fixed exposure time and allow the IP-SPAD pixel to wait
until the first photon timestamp is captured.

Supplementary Note 3.2. KPN-based Denoising Network for Low Light IP-SPAD Imaging

In principle, any standard neighborhood-based image denoising algorithm (e.g., bilateral filtering [42] and BM3D [15])
can be applied to the IP-SPAD images captured in a low photon count regime. But the heavy-tailed nature of the timestamps
poses problems to off-the-shelf denoising algorithms as they usually assume a light-tailed distribution of pixel intensities
(e.g., Gaussian distribution). A solution to this issue is the use of a variance-stabilizing Anscombe transform [3] to make
the noise variance uniform across the whole image. For photon timestamp data, the variance-stabilizing transform is the
logarithm. See Supplementary Note 3.3 for a proof. We design an image denoising deep neural network (DNN) that operates
on log-transformed first-photon timestamp images.

We use a kernel prediction network (KPN) architecture [5, 38]. Our network architecture is shown in Suppl. Fig. 3. The
network produces 5× 5 kernels for every pixel in the input image, which we apply to generate the denoised image. The only
substantial post-processing step is to correct the bias introduced by using the log-timestamp instead of the timestamp itself
(see Supplementary Note 3.3).

We train the network with timestamp images simulated from the DIV2K dataset [2, 48]. This dataset has 800 high-
resolution images; we simulate four random timestamp images for each image in the dataset for a total of 3200 training
images. The original 8-bit images are first converted to 16-bit linear luminance [47], before simulating the timestamps. The
simulated timestamps are then log-transformed.

We use the Adam optimizer [28] with a learning rate of 10−4. The loss function is a sum of squared errors in the pixel
intensities and absolute errors in the pixel-wise image gradients, both with respect to the original image from which the
timestamps are simulated [38]. Training runs for 1920 iterations with a batch size of 5 images, for a total of 3 epochs. Images
are randomly cropped into 128× 128 patches before passing into the network when training. However, since the network is
fully convolutional, it can handle arbitrary input image sizes at test time.

The architecture of our kernel prediction network-based denoising DNN is shown in Suppl. Fig. 3.
Suppl. Fig. 4 shows simulated denoising results comparing our KPN-based denoiser with two standard denoising methods:

bilateral filtering and BM3D.
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Suppl. Fig. 3: The kernel prediction network (KPN) architecture we have used to estimate per-pixel kernels of size 5 × 5,
which is adapted from the architectures used for burst denoising in [38] and for denoising Monte-Carlo renderings in [5].
The input image size is 128× 128 when training the network, but any image size can be used at the inference stage.

Suppl. Fig. 4: Denoising IP-SPAD Images with Low Photon Counts: (a-b) We simulate the extreme case of IP-SPAD
imaging by sampling at most one photon time stamp per pixel of a ground truth image. (c) Simply inverting the each time
stamp is not enough due to extreme noise, (d-f) so it is necessary to combine time stamps spatially. (d) We apply a bilateral
filter (σ = 7), which incorporates some spatial information, but still remains quite noisy. (e) BM3D [14] may over smooth,
and it seems to have particular trouble in bright regions. (f) Our KPN denoiser trained on photon timestamp data preserves
some object shapes like the bright ceiling light and the couches.



Supplementary Note 3.3. Homoskedasticity of log-timestamps

In this section we show that the log-transformation is a variance stabilizing transformation for first-photon timestamp data.
Let Y ∼ Exp(Φ) be the arrival time of the first incident photon (we drop the subscript in Y1 for simplicity). Our goal is to
show that the variance of log(Y ) is constant (homoskedasticity).

From the properties of the exponential distribution,

P (Y ≤ t) =1− e−Φt (S23)

=⇒ P (log Y ≤ log t) =1− e−Φt. (S24)

Defining Ỹ = log(Y ) and y = log(t),

P (Ỹ ≤ y) =1− e−Φey (S25)

=⇒ pỸ (y) =Φe−Φeyey (S26)

where pỸ (y) is the p.d.f. of Ỹ .

=⇒ E[Ỹ ] =

� ∞

−∞
yΦe−Φeyey dy (S27)

=

� ∞

−∞
Φyeye−Φey dy. (S28)

Take ey = u

E[Ỹ ] =

� ∞

0

Φ log(u)e−Φu du (S29)

Take Φu = v

E[Ỹ ] =

� ∞

0

(log(v)− log(Φ))e−vdv (S30)

=− log(Φ) +

� ∞

0

log(v)e−vdv (S31)

=− log(Φ)− γ, (S32)

where the second expression is an integral known to evaluate to −γ (γ ≈ 0.577 is the Euler-Mascheroni constant). We can
see that the log-timestamp only has a constant bias away from the true log-timestamp (= log(1/Φ)), which can be removed
separately.

We repeat the same ideas for calculating the variance:

E[Ỹ 2] =

� ∞

−∞
y2Φe−Φeyey dy (S33)

Take ey = u again:

E[Ỹ 2] =

� ∞

0

Φ(log2 u)e−Φu du (S34)



and v = Φu =⇒ log u = log v − logΦ. Then

E[Ỹ 2] =

� ∞

0

log2(v)e−v dv (S35)

− 2 log(Φ)

� ∞

0

log(v)e−v dv

+ log2(Φ)

=γ2 + π2
/6 + 2γ log(Φ) + log2(Φ), (S36)

where the first term on the right-hand side is also a known standard integral. Finally we have

Var(Ỹ ) =E[Ỹ 2]− E[Ỹ ]2 = π2
/6, (S37)

which proves the homoskedasticity of Ỹ = log(Y ).



Supplementary Note 4. Hardware Prototype
Our hardware prototype (5) consists of a single SPAD pixel mounted on two translation stages. Dead-time is controlled

using a long cable that produces analog delay. After each photon detection event the SPAD pixel has to be kept disabled
for few tens of ns to lower the probability of afterpulses [12] and reset its original bias condition. Usually this dead-time is
set either using the discharge time of an R-C network or employing a digital timing circuit, since the dead-time accuracy is
not a limiting factor in conventional SPAD applications. In case of dead-time defined using digital timing circuits, there are
implementations where its accuracy depends on the period of an uncorrelated (with respect to photon arrival times) digital
clock. For example, a 100 MHz clock frequency will limit the accuracy of the dead-time to about 10 ns, which is too
coarse to get reliable photon flux estimates. This is true especially at extremely high photon flux values where photons get
detected almost immediately after each dead-time duration ends. As described in the main text, we rely on low-jitter voltage
comparators and analog delays introduced by long coaxial cables to obtain precisely controlled dead-time durations with low
jitter.

Suppl. Fig. 5: The IP-SPAD hardware prototype consists of a single SPAD pixel mounted on translation stages to scan
the image plane of a vari-focal lens (Fujinon DV3.4x3.8SA-1). Part of a 20m long co-axial cable used for generating the
dead-time delay is also shown.

Supplementary Note 5. Pixel Non-idealities
When conducting experiments with our hardware prototype we found two non-idealities: dead-time drift and non-zero

gate rise time.

Dead-time Drift

When imaging high flux regions for extended periods of time our hardware prototype’s dead-time increases; we call this
dead-time drift. This is due to heating of the SPAD front-end. We calibrated each pixel position individually by constructing
an inter-photon timing histogram and using the first non-zero bin of this histogram as an estimate of the true dead-time for
that pixel position. Experimentally, we observed that the dead-time drift is slower than the 5ms exposure times used so this
method should approximate the true dead-time well for each pixel position. Without this correction the error introduced by
the drift dominates the denominator in Eq. (2) at high flux values, limiting the dynamic range.

When our single-pixel IP-SPAD stays active for long periods of time dead-time drift becomes a problem. Suppl. Fig. 6
shows inter-photon timing histograms of four different scene points with increasing flux levels (1 → 4). Notice that the
histograms are not aligned on the left edges indicating a difference in dead-times at these points. We correct for the dead-
time drift in by using a dead-time estimate for each pixel in the final image. We set the dead-time estimate in a pixel to the
smallest inter-arrival time from that pixel, this has the effect of shifting each pixel’s inter-arrival histogram to zero. In the
tunnel scene the difference between the longest used and shortest used dead-time is 887 ps, a variation of about 0.8%.

Gate Rise Time

When the SPAD enters and exits the dead-time phase, its bias voltage has to be quickly changed from above to below the
breakdown value, and vice-versa [8]. The duration of these transitions is as critical as the dead-time duration itself, and has



Suppl. Fig. 6: This figure shows inter-photon histograms for 4 points from the tunnel scene. Notice that the histograms are
not aligned on the left edge, indicating a drift in dead-time. We correct for this drift by taking the time of the first non-zero
bin as the dead-time for that pixel.

to be short (in order to swiftly restore the SPAD bias for the next detection) and precise (to prevent variations in the overall
dead-time duration). In our system the rise times are on the order of 200 ps: it translates into non-exponentially shaped
inter-photon timing histograms, especially in high flux regions. We did not find that this behavior detrimentally effected our
results; however, it has an effect similar to slightly tone mapping bright regions downward.

Unlike dead-time drift, the rise time behavior seems to be independent of how long the SPAD was exposed to a high flux
source. Fig. 7 shows inter-photon timestamp histograms for increasing photon flux levels. Rise time causes these to deviate
from an exponential shape at high flux levels.

We found that this behavior made it virtually impossible to fully saturate the SPAD pixel, that is increasing the incident
flux would lead to a non-linear increase in photons counted. We performed an experiment where a laser was directly pointed
into the SPAD active region and the power of the laser was increased. We found that the photon counts did not saturate before
the SPAD overheated and shut itself off.

The rise-time behaviour can by incorporated into the flux estimator derived in Supplementary Note 1 using a time-varying
quantum efficiency q(t). For t < 0, q(t) = 0 and

�∞
0

q(t)dt → ∞. When the dead time ends, the IP-SPAD pixel’s q(t)
ramps up to its peak value. The probability distribution of time-of-darkness, Yi, can be written as:

Yi ∼ fYi
(Yi|Y1 . . . Yi−1) =





q(Yi)Φe
−Φ

� Yi
0 q(l)dl for 0 < Yi < Ti

e−Φ
� Ti
0 q(l)dl · δ(t− Ti) for Yi = Ti

0 otherwise.

(S38)

where Ti is defined in Supplementary Note 1. For a series of N timestamps with times-of-darkness given by Y1 . . . YN , we
use a similar derivation to Supplementary Note 1 to find the maximum likelihood estimator (MLE):

�Φ =
N

� TN+1

0
q(t)dt+

�N
i=1

� Yi

0
q(t)dt

. (S39)

Eq. (S39) reduces to Eq. (S6) if q(t) is an ideal step function. For the experimental results shown in the main text, the
IP-SPAD pixel’s q(t) was not precisely known so we could not apply this correction. Future work will look at estimating q(t)
from inter-photon histograms and quantifying SNR improvements from such a correction.



Supplementary Note 6. Additional Results

Suppl. Fig. 7: Simulated Extreme Dynamic Range Scene: This figure shows simulated extreme dynamic range images
using an IP-SPAD camera compared with a conventional camera with different exposure settings. (a) A 5ms exposure image
with a conventional camera (full-well capacity 34,000 and read noise 5e− has many saturated pixels. Observe that the bright
bulb region is washed out. (b) A short exposure image is dominated by shot noise in darker parts of the scene. It becomes
visible only at a much lower exposure setting. Since this is a simulation we were able to reduce the exposure time down to
5× 10−5 ms which may be impossible to achieve with a conventional camera. In practice, this exposure can be achieved by,
say, reducing the shutter speed to 1/16,000 and adding a 10-stop ND filter. (c) A PF-SPAD camera is able to capture both
dark and bright regions in a single exposure, but the bright bulb filament still suffers from noise due to the soft-saturation
phenomenon. (d) Our proposed IP-SPAD method estimates scene brightness using high-resolution timestamps to capture
both extremely dark and extremely bright pixels, beyond the soft-saturation limit of a counts-based PF-SPAD. (Original
image from HDRIHaven.com)



Suppl. Fig. 8: Experimental Extreme Dynamic Range “Shelf” Scene: This “Shelf” scene shows extreme dynamic range,
with a bright bulb filament in one of the shelves and text in the neighboring shelf which is dark and not directly illuminated
by the light source. The bottom row of images uses a similar setup as the top row but also includes two bright LED lights
in addition to the filament bulb. The conventional camera requires three exposures to cover the dynamic range of this scene.
The proposed IP-SPAD flux estimator captures the scene in a single exposure.



Suppl. Fig. 9: Effect of Increasing Number of Photons on Denoising. Some image details start appearing with as few as
10 photon timestamps per pixel. For example, the text on the fire-truck is visible with images denoised with the bilateral filter
and our KPN-based denoiser. BM3D appears to give less noisy results in this example but finer details are lost.



Supplementary Note 7. Pixel Designs for Passive SPAD Imaging

Suppl. Fig. 10: IP-SPAD pixel designs for passive imaging: (a) and (b) are existing SPAD pixel designs with counts and
in-pixel timing circuits. (c) and (d) are hypothetical future pixel designs for passive IP-SPAD cameras that store individual
photon timestamps or compute summary statistics on the fly.

Passive SPAD Pixel Architectures Many current SPAD pixel designs are targeted towards specialized active imaging ap-
plications that operate the detector in synchronization with a light source, such as pulsed laser. The most common data
processing task is to generate a timing histogram which counts the number of photons detected by the SPAD pixel as a
function of the (discretized) time delay since the transmission of the most recent laser pulse. The requirements for the passive
imaging technique shown in this paper are different: there is no pulsed light source to provide a timing reference. Instead,
it is important to precisely control (1) the dead time duration (2) rise and fall times of the SPAD bias circuitry, and (3) the
duration of the global exposure time.

Our single-pixel IP-SPAD hardware prototype, although acceptable as a proof-of-concept, is not a scalable solution for
sensor arrays. Delay-locked loops circuits suitable for multi-pixel implementation can be used in the future to precisely
control the dead-time duration. A large array of IP-SPAD pixels will generate an unreasonably large volume of raw photon
timestamp data that cannot be transferred off the sensor chip for post-processing. A megapixel SPAD array has been recently
demonstrated using a 180 nm CMOS technology [39], but the in-pixel electronics is currently limited to gating circuitry and a
1-bit data register. The trade-off between SPAD performance and pixel number can be overcome by recently-developed 3D-
stacking approaches where SPAD arrays are fabricated in a dedicated technology, the high density data-processing electronics
are developed in scaled technology, and then the two chips/wafers are mounted one on top of the other [23, 10].

Fig. 10(a) shows the simplest single-pixel architecture currently used as a building-block in large SPAD arrays. It com-
prises the photodetector, its readout and quenching circuits and a digital counter, for storing the number of detected photons.
While this architecture is widely used [6], it does not exploit photon arrival times to increase dynamic range. As shown in
Fig. 10(b), adding an in-pixel time-to-digital converter (TDC) able to acquire and store individual photon time-stamps (with
respect to the exposure time synchronization signal) can solve this limitation. Also this approach is nowadays quite common
when designing SPAD arrays [24, 44], however, increasing the array dimension and considering a very high incident photon
flux, it will be impractical to acquire and transfer timestamps for each photon and each pixel, because it will lead to intractable
volume of data to be processed. Instead, a more efficient way of storing and transmitting photon time-stamp data for passive
imaging can rely on simply storing the first and last photon time-stamps within a single exposure time, together with the



total photon counts. The corresponding pixel design is shown in Fig. 10(c). While this increases pixel complexity over the
previous SPAD pixel design examples, it only requires two additional data registers. The disadvantage of this scheme is that,
depending on the total exposure time, the TDC may require a large full-scale range. For example, using an exposure time in
the millisecond range and the timestamp resolution in picoseconds, the TDC data depth will be log2(10

−3/10−12) ≈ 30 bits.
Note that our brightness estimator keeps track of the average time-of-darkness between photon detections over a fixed

exposure time. An alternative to storing first and last timestamps may be to instead store a running average of the inter-
photon times, as shown in Fig. 10(d). This can be implemented in-pixel using basic digital signal processing circuits. At
high photon flux levels, the expected inter-photon times will be short enough that a TDC with smaller full scale range could
be used. Although the inter-photon times may still be quite long for low flux levels, the flux estimator can fall back to using
photon counts only, instead of timestamps.

SPAD Array Designs for Passive Imaging The theoretical analysis and experimental results in this paper were restricted
to a single SPAD pixel. For most passive imaging applications, in practice, there will be a need to scale this method to large
form factor SPAD arrays with thousands of pixels. This will introduce additional design challenges and noise sources not
discussed in this work. A large form-factor SPAD array of free-running SPAD pixels will generate an unreasonably large
volume of raw photon time-stamp data that cannot be simply transferred off the sensor chip for post-processing. For instance,
consider a hypothetical 1 megapixel SPAD array consisting of pixels shown in Fig. 10(b), with dead time of 100 ns. Assume
an average photon flux of 105 photons/s over the pixel array and the pixels generate 32-bit IEEE floating-point timestamps
for each detected photon. This corresponds to 400 GiB/s of data generated from the chip. A megapixel SPAD array has
been recently demonstrated using a 180nm CMOS technology [39] , but the in-pixel electronics is currently limited to gating
circuitry and 1-bit data register (photon detected or not).

One possible solution to overcome this problem could include the design of large arrays using a combination of pixel
architectures sketched in Fig. 10, i.e. where only a fraction of pixels would include high resolution TDCs while the rest of
the pixels only use photon counters. This will still enable capturing extremely high flux values albeit with reduced spatial
resolution. In another solution TDCs are shared among more pixels, while counters are integrated in each pixel. This will
reduce the maximum count rate, but each detected photon is counted and time tagged.

SPAD performance (i.e. detection efficiency, dark count noise, temporal resolution, afterpulsing probability) in develop-
ing multi-pixel arrays is usually better when using “legacy” fabrication technologies, like 350 nm and 180 nm CMOS, or
even “custom” technologies (which, however, do not allow the on-chip integration of ancillary electronics) [17]. With such
technologies, the relatively large minimum feature size prevents in-pixel integration of sophisticated electronics like high-
resolution (few ps) TDCs, data processing circuits and memories (unless without accepting an extremely low fill-factor). The
trade-off between SPAD performance and pixel number can be overcome by recently-developed 3D-stacking approaches:
SPAD array is fabricated in a dedicated technology, the high density data-processing electronics is developed in scaled
technology, and then the two chips/wafers are mounted one on top of the other [23, 10].

Passive IP-SPAD arrays may also require pixel-wise calibration. The non-linear pixel response curve may make this
more challenging than conventional CMOS camera pixels. It will be necessary to characterize non-uniformity in terms of
dead-time durations and timing jitter and account for these for removing any fixed pattern noise.

Another important practical consideration is power requirement, especially when operating in high flux conditions where
a large number of avalanches will be created causing huge power requirement for processing these in real-time and reading
out the counts. There is also a significant heat dissipation issue which can exacerbate pixel calibration due to the strong
temperature dependence of various pixel parameters like dark count rate and dead-time drifts. Such power issues may be
mitigated with scaled technologies operating at lower supply voltage.


