
Appendix: Unsupervised 3D Keypoint Discovery for Shape Control

Tomas Jakab1,4∗, Richard Tucker4, Ameesh Makadia4, Jiajun Wu3, Noah Snavely4, Angjoo Kanazawa2,4

1University of Oxford, 2UC Berkeley, 3Stanford University, 4Google Research

This supplemental document provides an ablation study (Appendix A), extensive results (Appendices B and C), and further
implementation details (Appendix D). Please also refer to our video on our project page1that demonstrates our method in
action.

A. Ablations

(a) 16 sampled farthest points (b) 1024 points (full point cloud)

(c) 24 sampled farthest points (d) 1024 points (full point cloud)

Figure 1: Farthest Point Keypoint regularizer ablation. We investigate the influence of the number J of sampled farthest points q used
for the keypoint regularizer (Section 3.2 of the main paper) on the quality of discovered unsupervised keypoints. We show unsupervised
3D keypoints trained using two versions of regularization. First, we set the number of sampled farthest points to double of the number of
keypoints (a, c). This is the setup that we use throughout the paper. Second, we set the number of sampled farthest points to the number of
points in the point cloud representing the shape. This essentially results in a regularizer that is minimizing the Chamfer distance between the
unsupervised keypoints and the object point cloud. Although the learned unsupervised keypoints have a good coverage (b, d) they are not as
equally spaced and characteristic of the shape as (a, c).

Varying number of regularizing points. We examine the importance of the number of sampled farthest points q on the
quality of keypoint regularization (Section 3.2 of the main paper). Figure 1 shows the effect of different numbers of sampled
farthest points on the discovered keypoints. Using a high number of sampled farthest points in the regularization fails to learn
keypoints that are equally spaced and characteristic of the underlying shape.

Varying number of keypoints. We vary the number of unsupervised keypoints discovered by our method. Figure 2 shows
that our keypoints remain semantically consistent for different numbers of discovered keypoints.

* Work done while interning at Google Research.
1http://tomasjakab.github.io/KeypointDeformer
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B. Shape Control via Unsupervised 3D Keypoints
We show user guided interactive shape control in our supplementary video on our project page. Figure 5 shows frames

captured from user-guided interactive shape editing. Editing using our keypoints is fast and intuitive while preserving the
character and details of the original shape.

C. Unsupervised 3D Keypoints
We show extended quantitative results for semantic part correspondence experiment and detailed correlation tables

in Figure 3 for the ShapeNet Car category. Figures 6 to 10 show extensive randomly sampled qualitative test results for our
unsupervised 3D keypoints.

D. Implementation Details
Our model assumes that the shapes are aligned (in the same orientation). The initial cage is a 42-vertex icosphere. We limit

the influence matrix W to influence at most M nearest cages vertices (Section 3.1) per each keypoint, with M = bC/Kc,
where C is the number of cage vertices and K is the number of discovered keypoints. We use a learning rate of 0.001. The
scalar loss coefficients (Section 3.2) αkpt and αinf are set to 1.0 and 10−6 respectively. Figure 4 shows detailed description of
network architectures used for the keypoint predictor Φ and the influence predictor Γ.

Datasets. KeypointNet [7] dataset contains semantic 3D keypoint annotations for ShapeNet dataset [1]. Some models in
KeypointNet are missing full keypoint annotations, therefore we use a subset of annotated keypoints that are contained in
at least 80% of the models. KeypointNet also does not follow the standard training and testing splits from ShapeNet. We
resample the KeypointNet dataset splits to make it compatible with the original ShapeNet splits.
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8 unsupervised keypoints

4 unsupervised keypoints

16 unsupervised keypoints

12 unsupervised keypoints

(a) predicted unsupervised keypoints

# of unsupervised keypoints 4 8 12 16

PCK@0.05 0.56 0.61 0.71 0.71

(b) quantitative evaluation

Figure 2: Varying number of keypoints. The figure (a) shows the effect of different number of discovered keypoints (4, 8, 12, 16 from the
top). The results are shown on randomly sampled results for ShapeNet Airplane category. Results in the table (b) are in terms of PCK@0.05
on airplanes from the KeypointNet dataset.
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airplane

car

chair

Chen et al. Fernandez et al. ours

Chen et al. Fernandez et al. ours

kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 kp9 kp10 kp11 kp12 best 
avg kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 kp9 kp10 kp11 kp12 best 

avg

back 0.00 0.02 0.14 0.76 0.84 0.10 0.00 0.60 0.03 0.82 0.00 0.00 0.01 0.68 0.80 0.00 0.01 0.69 0.04 0.79 0.78 0.02 0.00 0.01

seat 0.08 0.07 0.78 0.08 0.00 0.82 0.09 0.44 0.08 0.00 0.79 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.95 0.00 0.96

legs 0.77 0.80 0.09 0.02 0.00 0.05 0.76 0.04 0.79 0.00 0.09 0.08 0.76 0.00 0.00 0.75 0.75 0.00 0.01 0.01 0.00 0.01 0.76 0.01

best 0.77 0.80 0.78 0.76 0.84 0.82 0.76 0.60 0.79 0.82 0.79 0.82 0.78 0.76 0.68 0.80 0.75 0.75 0.69 0.97 0.79 0.78 0.95 0.76 0.96 0.80

Chen et al. Fernandez et al.

kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 kp9 kp10 kp11 kp12 best 
avg

back 0.00 0.74 0.00 0.73 0.00 0.01 0.01 0.88 0.01 0.94 0.96 0.01

seat 0.86 0.61 0.02 0.67 0.01 0.88 0.01 0.01 0.02 0.00 0.00 0.91

legs 0.01 0.30 0.94 0.31 0.93 0.52 0.88 0.00 0.91 0.01 0.01 0.48

best 0.86 0.74 0.94 0.73 0.93 0.88 0.88 0.88 0.91 0.94 0.96 0.91 0.88

ours

kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 best 
avg kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 best 

avg kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 best 
avg

roof 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.00 0.00 0.00 0.00 0.00 0.01

wheels 0.16 0.37 0.01 0.01 0.07 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.75 0.01 0.02 0.58 0.85 0.00 0.00 0.72 0.04 0.75 0.01 0.00

body 0.47 0.49 0.18 0.39 0.45 0.37 0.37 0.39 0.73 0.08 0.62 0.64 0.01 0.74 0.68 0.00 0.30 0.19 0.73 0.49 0.63 0.25 0.77 0.75

best 0.47 0.49 0.18 0.39 0.45 0.37 0.37 0.39 0.39 0.73 0.56 0.62 0.64 0.75 0.74 0.68 0.58 0.66 0.85 0.64 0.73 0.72 0.63 0.75 0.77 0.75 0.73

kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 best 
avg kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 best 

avg kp1 kp2 kp3 kp4 kp5 kp6 kp7 kp8 best 
avg

body 0.30 0.29 0.35 0.17 0.01 0.01 0.57 0.73 0.02 0.89 0.00 0.89 0.77 0.08 0.00 0.09 0.01 0.02 0.08 0.03 0.92 0.87 0.68 0.52

wing 0.09 0.49 0.01 0.90 0.98 0.98 0.02 0.49 0.00 0.10 0.62 0.00 0.00 0.89 0.62 0.88 0.77 0.96 0.76 0.95 0.00 0.01 0.02 0.03

tail 0.10 0.00 0.00 0.01 0.00 0.00 0.82 0.01 0.65 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.12 0.86

best 0.30 0.49 0.35 0.90 0.98 0.98 0.82 0.73 0.69 0.65 0.89 0.62 0.89 0.77 0.89 0.62 0.88 0.78 0.77 0.96 0.76 0.95 0.92 0.87 0.68 0.86 0.85

(a) unsupervised keypoints correlation

airplane cap car chair guitar knife laptop motorbike mug skateboard table pistol bag rocket earphone lamp

Chen et al. [2] 0.69 0.24 0.39 0.78 0.97 0.94 0.95 0.91 0.50 0.89 0.75 0.78 0.35 0.56 0.30 0.50
Fernandez et al. [3] 0.78 0.45 0.66 0.80 0.93 0.92 0.85 0.90 0.78 0.92 0.85 0.60 0.72 0.61 0.24 0.40
ours 0.85 0.71 0.73 0.88 0.99 0.96 0.96 0.93 0.94 0.96 0.92 0.91 0.85 0.90 0.72 0.53

(b) average unsupervised keypoints correlation

Figure 3: Semantic part correspondence. We evaluate semantic part correspondence for the ShapeNet Car category. The tables (a) shows
the frequency of each unsupervised keypoint [kp*] being associated with a given object part. Chen et al. [2] show worse performance in this
task because that methods tends to predict keypoints inside the object far from the annotated object surface. We also report the average
unsupervised keypoints correlation for each category (b). ↑ is better.
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(a) Keypoint predictor Φ
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(b) Influence predictor Γ

Figure 4: Network architectures. The network architectures are based on a PointNet encoder [5, 6]. K is the number of discovered
keypoints, C is the number of cage vertices. LReLU stands for Leaky ReLU with 0.1 negative slope.

Figure 5: Shape control via unsupervised 3D keypoints. We show steps from shape editing using our unsupervised 3D keypoints. Please
refer to our supplementary video on our project page to see the editing in action.
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Figure 6: Unsupervised 3D keypoints on real-world 3D scans. Randomly sampled results with 8 unsupervised keypoints on real-world
3D scans of shoes from Google Scanned Objects dataset [4].
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Figure 7: Unsupervised 3D keypoints. Randomly sampled results with 8 unsupervised keypoints for ShapeNet Airplane category.

Figure 8: Unsupervised 3D keypoints. Randomly sampled results with 8 unsupervised keypoints for ShapeNet Guitar category.
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Figure 9: Unsupervised 3D keypoints. Randomly sampled results with 12 unsupervised keypoints for ShapeNet Chair category.

Figure 10: Unsupervised 3D keypoints. Randomly sampled results with 8 unsupervised keypoints for ShapeNet Car category.
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