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CAMERAS: Enhanced Resolution And Sanity preserving Class Activation

Mapping for image Saliency

A-1: Computing time

Table 1. Average computational time for saliency map generation for RISE [20], Extremal Perturbation (Extremal) [8], NormGrad [21],
GradCAM [25] and the proposed CAMERAS. GradCAM is the fastest. CAMERAS is generally orders of magnitude faster than the
remaining methods.

Model RISE Extremal NormGrad GradCAM CAMERAS
ResNet 26.4s 35.8s 7.0s 0.07s 0.44s
DenseNet 79.7s 64.1s 2.5s 0.08s 0.57s
Inception 55.9s 60.9s 5.0s 0.08s 0.54s

We compare computational time of the proposed CAMERAS with other techniques in Table 1 that reports the average
processing time of an image, estimated over 1000 images for three different visual models. For a fair comparison, all of the
experiments are performed on NVIDIA Titan V GPU with Pytorch framework, keeping the batch size 1. Publicly available
implementations are used for NormGrad [21], Extremal Perturbations [8] and RISE [20]. For GradCAM [25], we use the
Torchray package [8]. For the Extremal perturbations, we fix the hyper-parameters ‘area’ to 30% and iterations to 1000.
Similarly, RISE has a fixed maximum number of 6000 iterations. These settings generally achieve visually comparable
results to CAMERAS.

Table 1 shows that CAMERAS computational time is slightly higher than Grad-CAM, which is a highly efficient method
for saliency computation. This happens because CAMERAS requires multiple forward/backward passes to construct the
saliency map. However, the overall computational cost resulting from these passes are far less than the other methods. This
is reflected in the order of magnitudes higher processing times required by RISE and Extremal perturbations.

A-2: CAMERAS parameters
Table 2. Average difference between CAMERAS saliency maps generated with different resolution steps (‘N ’) and fixed maximum reso-
lution ζm = (1K, 1K). The results were computed for ResNet-50 over 1000 randomly sampled images from ILSVRC 2012 validation
dataset.

Steps ↓→ N = 5 N = 6 N = 7 N = 8 N = 9 N = 10
N = 5 0.00 0.11 0.09 0.11 0.10 0.11
N = 6 0.11 0.00 0.13 0.08 0.15 0.10
N = 7 0.09 0.13 0.00 0.11 0.07 0.09
N = 8 0.11 0.08 0.11 0.00 0.12 0.07
N = 9 0.10 0.15 0.07 0.12 0.00 0.10
N = 10 0.11 0.10 0.09 0.07 0.10 0.00

CAMERAS accepts resolution steps (‘N ’) as a hyper-parameter. The performance of our technique remains largely
insensitive for N ∈ [5, 10]. In order to demonstrate that, we report the average difference between the saliency maps of
our method for different values of N . A small difference signifies only slight variations in the maps and hence insensitivity
of CAMERAS to the hyper-parameter. In Table 2, we report the average difference values, where the value for a step size
between N1 and N2 is computed as:

E
[ ||(Ψ1 −Ψ2)||2

(||Ψ1||2 + ||Ψ2||2)/2

]
s.t Ψ1 = CAMERAS(N1),Ψ2 = CAMERAS(N2), (1)
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Figure 1. Saliency maps for an image from Pascal VOC 2007 [7] over ResNet-50 model. The second column includes the result for Grad-
CAM (top-row), its score for the pointing game (middle row) and its score on our proposed metrics score (last row). The corresponding
results for CAMERAS are given in the last column. Our metrics account for the overall precision on the saliency map.

From the table 2, it can be observed that the difference between the saliency maps stays within 15% of the average norm
of the original maps. This is true even with the reduction in number of steps by half. This validates that the performance of
CAMERAS is reasonably stable for different values of ‘N ’.

A-3: Further discussion on the proposed evaluation metrics
In the main paper, we indicated that due to the crudeness of the saliency maps resulting from the earlier methods, existing

evaluation metrics are also meant to evaluate the maps imprecisely. For instance, Pointing game [34] evaluates a saliency
map by checking if the maximal point in the saliency map lies with in the bounding box of an object. If this is true, it
assigns the map the best score. However, no attention is paid to the rest of the region identified by the map. For example, in
Figure 1 (top-row) Pointing game assigns equal score to the saliency maps of ‘GradCAM’ (ΨGradCAM ) and ‘CAMERAS’
(ΨCAMERAS), ignoring the fact that Grad-CAM map also includes the background region outside the bounding box. The
binary nature of the score does not reveal much about the actual quality of the attribution maps. Therefore, a more precise
metric is needed that scores the attribution maps corresponding to model confidence over the salient region. Our proposed
metrics capture this notion adequately. This is reflected in Figure 1 where Grad-CAM clearly gets penalized for inclusion of
the irrelevant pixels under our evaluation metrics.

We further scrutinize the behaviour of the proposed metrics over the inclusion of irrelevant pixels. Inclusion of irrelevant
pixels is generally the result of blobiness caused by interpolation in the existing methods. This imprecision should result in
reduction of an appropriate metric score. We empirically verify this for our metrics by linearly increasing the CAMERAS
saliency map to the GradCAM map. This is performed by setting different values of γ in Equation 2

Ψinterpolated = ΨCAMERAS + γ(ΨGradCAM −ΨCAMERAS) s.t γ ∈ [0, 1]. (2)

We gather a number of interpolated saliency maps by incremental increase in the salient region. The proposed metric is
computed over these interpolated saliency maps and their trend is analyzed. Figure 2 shows some of the interpolated saliency
maps (left) and reports the metric variation in a plot (right). The graph matches our intuition that as more and more irrelevant
pixels are included, the scores decreases monotonically. This demonstrates that the metric adequately captures the attribution
from all the pixels. We note that, for all of these interpolated saliency maps, the pointing game score stays the same. This
reinforces our argument for the need of more precise evaluation metrics for image saliency.

Figure 2. Interpolated saliency maps computed under Equation 2 with changing value of γ. For γ = 0, the map corresponds to CAMERAS.
For γ = 1, the map resembles to that computed by GradCAM. The graph on the right shows the corresponding impact on ρ+map score.



A-4: Adversarial attacks inspired sanity check
Adversarial attacks alter image pixels to change the prediction of a model. These alterations are systematic - in the directions
that maximally alter the model output. Intuitively, cleaning the adversarially attacked pixels by replacing them with the
original pixels, should restore the model’s confidence on the original label of the image. This observation inspires a simple
sanity check for the image saliency methods - a test that implicitly accounts for the precision of the map.

Saliency methods ultimately aim at tallying the model-centric importance of individual pixels of an image. Therefore,
for a ‘sane’ method that assigns correct importance to the individual pixels, iteratively cleaning the adversarial version of
those pixels in a sorted manner should result in a steep rise of model’s confidence on the original image label. For a saliency
map that fails to compute the correct importance for the individual pixels, restoration of the confidence with this process is
expected to be slow and unstable. This behavior indicates the method to be ‘less’ sane. We make two observations here.
First, our sanity check does not have a binary outcome. Though less acknowledged, this fact also holds for the other popular
sanity checks. For instance, the model layer randomisation of [2] also does not offer a binary decision. Thus, a method
can be less sane than another under the proposed sanity check. Second, our definition of sanity is based on individual pixel
importance. This is a tough criterion, emulating the hardest possible scenario for the perfect sanity. That is, only the method
that computes correct relative importance for all the pixels in an image can perfectly pass this test.

To observe a map’s sanity, we suggest iterative cleaning of the adversarial pixels in an attacked version of the image in
the descending order of pixel importance, as stipulated by the computed saliency map. An ideal saliency map will raise the
ground truth confidence of the model almost instantly under this cleaning process. Therefore, the area under probability-
pixels curve for an ideal saliency map will be

AreaIdeal ≈ PGroundTruth ×H ×W s.t PGroundTruth = P
(
K(I)

)
, I ∈ RH×W×C , (3)

Any deviation from the ideal saliency mask will introduce a corresponding change in the area under the curve, which can be
used as an indicator of sanity. The deviation can be computed by observing the difference in the area under probability-pixels
graph of an ideal and a given saliency map. A smaller difference will be more desirable.

To implement this sanity check, we corrupt a given image by the proposed enhanced PGD scheme and afterward iteratively
clean the resulting adversarial image in the order of importance indicated by the saliency map. The computational complexity
of this process is directly proportional to number of pixels involved. Therefore, we fix the maximum number of pixels to be
cleaned to a fraction of the original image size. We evaluate the sanity score as,

Sanity =
AreaIdeal −AreaΨ

AreaIdeal
, (4)

where ‘AreaIdeal’ indicates area of the ideal scheme and ‘AreaΨ’ indicates the area of a given image saliency method. This
formulation allows to rank the sanity as a real number in [0, 1]. Figure 3 shows the sanity of Grad-CAM saliency maps and
CAMERAS for a number of images. It highlights that CAMERAS saliency maps result in steep probability-pixel curves than
those of Grad-CAM. This is reflected in their respective sanity scores indicated in the yellow fonts. The low score validates
that CAMERAS saliency maps are much more sane than those of Grad-CAM.



Figure 3. Probability-pixels curves (last column) of Grad-CAM (Brown) and CAMERAS (Blue) for the image shown in first column. The
saliency map from CAMERAS is shown in second column and Grad-CAM in the third column respectively. The sanity scores (smaller is
better) are indicated over the saliency maps in ‘yellow’ fonts. Scores are evaluated with the ideal area composed of 10% image pixels.



A-5: Further Qualitative Comparison Results
We have included additional results for ResNet, DenseNet and Inception in Figure 4, 5 and 6 respectively.

Figure 4. Qualitatively comparison of CAMERAS attribution maps with other schemes including Gradient [27], Grad-CAM (GCAM),
[25], RISE [20] and NormGrad[21]. All of the results are generated with ImageNet pretrained ResNet-50.



Figure 5. Qualitatively comparison of CAMERAS attribution maps with other schemes including Gradient [27], Grad-CAM (GCAM),
[25], RISE [20] and NormGrad[21]. All results are generated with ImageNet pretrained DenseNet-121.



Figure 6. Qualitatively comparison of CAMERAS attribution maps with other schemes including Gradient [27], Grad-CAM (GCAM),
[25], RISE [20] and NormGrad[21]. All results are generated with ImageNet pretrained Inception-V3.



A-6: Further results for Enhanced PGD
We have included further results of Enhanced PGD in Figure 7. These results highlight that CAMERAS saliency maps

effectively enhance the visual quality of perturbations while maintaining similar fooling confidence.

Figure 7. Comparison of visual quality of adversarial images with Vanilla PGD [18] and Enhanced PGD for three different visual classifiers.
These attacks were generated with ε = 12/255, maintaining 99.99% confidence on incorrect classes.

A-6: Further results for Prediction Confidence
Additional results showing similarities in the attention of different models on similar features to achieve similar confidence

are given in Figure 8.

Figure 8. Precise saliency of CAMERAS reveals similarity in the level of attention on fine-grained features causes similarity in the predic-
tion confidence (given as percentages) of different models.


