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1. Post-hoc explainers
In this section, we present the details of the consid-

ered graph explainability techniques (explainers) in this
work: GRAPHLRP (Section 1.2), GRAPHGRAD-CAM
(Section 1.3), GRAPHGRAD-CAM++ (Section 1.4),
GNNEXPLAINER (Section 1.5), and RANDOM (Sec-
tion 1.6).

1.1. Notation

We define an attributed undirected entity graph G :=
(V,E,H) as a set of nodes V , edges E, and node attributes
H ∈ R|V |×d. d denotes the number of attributes per node,
and |.| denotes set cardinality. We denote an edge between
nodes u and v as euv ∈ E. The graph topology is defined by
a symmetric graph adjacency, A ∈ R|V |×|V |, where Auv =
1 if euv ∈ E. Hn,k expresses the k-th attribute of the n-th
node. The forward prediction of a cell-graph GCG is de-
noted as, y = M(GCG), whereM is a pre-trained GNN,
and y ∈ R|T | are the output logits. Notation y(t), t ∈ T
denotes the output logit of the t-th class. We refer to the
logit of the predicted class as ymax = maxt∈T y(t), and the
predicted class as tmax = argmaxt∈T y(t).

1.2. Layerwise relevance propagation: GRAPHLRP

Layerwise Relevance Propagation (LRP) [1] is a fea-
ture attribution based post-hoc explainer. LRP explains an
output logit by determining the individual contribution of
each input element to the logit value. An output logit, de-
fined as the output relevance for a given class, is layer-
wise back-propagated until the input to compute the pos-
itive or negative impact of the input elements on the out-
put logit. LRP, initially proposed for fully connected lay-
ers (LRP-FC), works as follows. Given a pre-trained fully
connected layer W ∈ Rz1×z2 between layer 1 and layer

∗denotes equal contribution

2, where z1 and z2 are the number of neurons in layer 1
and layer 2, respectively, we compute the contributions of a
neuron i, i ∈ {1, ..., z1} using the propagation rules in [6].
In this work, we are interested in identifying the input el-
ements positively contributing to the prediction. To this
end, we use the z+ propagation rule that back-propagates
the positive neuron contribution from layer 2 to layer 1 as:

Ri =

z2∑
j

fi|wij |∑z1
k fk|wkj |

Rj (LRP-FC)

where |wij | is the absolute value of the weight between i-th
and j-th neuron in layer 1 and 2, respectively. fi denotes
the activation of the i-th neuron in layer l.

The extension from LRP-FC to LRP for graph isomor-
phism network (GIN) layers (GRAPHLRP) is achieved by
following the observations in [8]. First, the aggregate step
in GNN corresponds to projecting the graph’s adjacency
matrix on the node attribute space. For simplicity, assum-
ing a 1-layer MLP as an update function, the GIN layer with
mean aggregator can be re-written in its global form as:

H(l+1) = σ
(
W (l)(I + Ã)H(l)

)
(1)

where Ã is the degree-normalized graph adjacency matrix,
i.e. Ãij = 1

|N (i)|Aij . σ is the ReLU activation function.
Second, this representation allows us to treat the term (I +
Ã) as a regular, fully connected layer. We can then apply
the z+ propagation rule with weights wij defined as:

wij = 1 if i = j (2)

wij =
1

|N (i)|
if eij ∈ E (3)

wij = 0 otherwise (4)

LRP outputs an importance score for each node i in the in-
put graph.
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1.3. Saliency-based: GRAPHGRAD-CAM

Grad-CAM [9] is a feature attribution post-hoc explainer
that identifies salient regions of the input driving the neural
network prediction. It assigns importance to each element
of the input to produce Class Activation Map [11]. While
originally developed for explaining CNNs operating on im-
ages, GRAD-CAM can be extended to GNNs operating on
graphs [7].

GRAPHGRAD-CAM processes in two steps. First, it as-
signs an importance score to each channel of a graph con-
volutional layer. The importance of channel k in layer l is
computed by looking at the gradient of the predicted output
logit ymax w.r.t. the node attributes at layer l of the GNN.
Formally it is expressed as:

w
(l)
k =

1

|V |

|V |∑
n=1

∂ymax

∂H
(l)
n,k

(5)

In the second step, a node-wise importance score is com-
puted using the forward node feature activations H(l) as:

L(l, v) = ReLU
( d(l)∑

k

w
(l)
k H

(l)
n,k

)
(GRAPHGRAD-CAM)

where L(l, v) denotes the importance of node v ∈ V in
layer l, and d(l) denotes the number of node attributes at
layer l. Since we are only interested in the positive node
contributions, i.e. nodes that positively influence the class
prediction, we apply a ReLU activation to the node im-
portances. Following prior work [7], we take the average
node importance scores obtained over all the GNN layers
l ∈ {1, ..., L} to obtain smoother node importance scores.

1.4. Saliency-based: GRAPHGRAD-CAM++

GRAPHGRAD-CAM++ extends GRAD-CAM++ [2] to
graph structured data. It improves the node importance lo-
calization by introducing node-wise contributions to chan-
nel importance scoring in Equation 5. Specifically, the mod-
ification is presented as,

w
(l)
k =

1

|V |

|V |∑
n=1

α
(l)
n,k

∂ymax

∂H
(l)
n,k

(6)

where α(l)
n,k are node-wise weights expressed for each at-

tribute k at layer l. The derivation of a closed-form solution
for α(l)

n,k is analogous to the derivation in [2], where the size
of graph, i.e. number of nodes, replaces the spatial dimen-
sions of a channel as:

α
(l)
n,k =

∂2ymax

(∂H
(l)
n,k)

2

2 ∂2ymax

(∂H
(l)
n,k)

2
+
∑|V |
n=1H

(l)
n,k

(
∂3ymax

(∂H
(l)
n,k)

3

) (7)

The subsequent node importance computation in
GRAPHGRAD-CAM++ is same as GRAPHGRAD-CAM.

1.5. Graph pruning: GNNEXPLAINER

The GNNEXPLAINER [10, 5] is a graph pruning based
post-hoc explainer for explaining GNNs. GNNEXPLAINER
is model-agnostic, i.e. it can be used with any flavor of
GNN. Intuitively, GNNEXPLAINER tries to find the min-
imum sub-graph Gs ⊂ G such that the model prediction
y =M(G) is retained. The inferred sub-graph Gs is then
regarded as the explanation for G. This approach can be
seen as a feature attribution method with binarized node
importance scores, i.e. a node v ∈ V has importance one
if v ∈ Vs, and zero otherwise. Exhaustively searching Gs
in the space created by nodes V and edges E is infeasi-
ble due to the combinatorial nature of the task. Instead,
GNNEXPLAINER formulates the task as an optimization
problem that learns a mask to activate or deactivate parts
of the graph. The initial formulation by [10], developed for
explaining node classification tasks, learns a mask over the
edges, i.e. over the adjacency matrix. Instead, we follow the
prior work in [5] to learn a mask over the nodes. Indeed, as
we are concerned with classifying G, the optimal explana-
tion Gs can be a disconnected graph. Furthermore, in cell
graphs, the nodes representing biological entities are more
intuitive and substantial for disease diagnosis than edges,
that are heuristically-defined.

Formally, we seek to learn a mask MV such that the in-
duced masked sub-graph Gs, (1) is as small as possible,
(2) outputs a binary node importance, and (3) provides the
same prediction as the original graph. These constraints can
be modeled by considering a loss function as:

L = LKD(ŷ, y
(m)) + αMV

|V |∑
i

σ(M
(m)
Vi

) + αHHe(σ(M (m)
V ))

(8)

where, m is the optimization step and σ is the sigmoid ac-
tivation function. The first term is a knowledge-distillation
loss LKD between ŷ =M(G) and y(m) =M(Gs) ensur-
ing that y(m) ≈ ŷ. The second term aims to minimize the
size of the mask MV . The third term binarizes the mask
by minimizing the element-wise entropy He of MV . Fol-
lowing previous work [4], LKD is built as a combination of
distillation and cross-entropy loss,

LKD = λLCE + (1− λ)Ldist where λ =
He(y(m))

He(ŷ)
(9)

where LCE is the regular cross-entropy loss and Ldist is the
distillation loss. When the element-wise entropy He(y(m))
increases, the term LCE gets larger and reduces the proba-
bility of changing the prediction. Each term in Equation 8
is empirically weighed such that their contributions to L



are comparable. We set αMV
= 0.005 and αH = 0.1.

We learn MV using Adam optimizer with a learning rate of
0.01. L is optimized for 1000 steps with an early stopping
mechanism, which triggers if the class prediction using Gs
is changed. Therefore, Gs and G always predict the same
class, i.e. t(m)

max = t̂max ∀m.

1.6. Random selection: RANDOM

The RANDOM baseline is implemented using a random
nuclei selection. The number of selected nuclei per RoI is
given by the threshold value k ∈ K.

2. BRACS dataset

In this paper, the BRACS dataset is used to analyze CG
explainability for breast cancer subtyping. The pixel-level
and entity-level statistics of the dataset are presented in Ta-
ble 1. Training, validation, and test splits are created at the
whole-slide level for conducting the experiments. The de-
tails of the class-wise distribution of images in each split are
presented in Table 1.

3. Concepts and Attributes

In this paper, we focus on pathologically-understandable
nuclear concepts C pertaining to nuclear morphology for
breast cancer subtyping. To quantify each c ∈ C, we use
several measurable attributesAc. Table 2 presents the list of
concepts and corresponding attributes used to perform the
proposed quantitative analysis in this work. Also, Table 2
includes the class-wise expected criteria for each concept.

The attributes of the nuclei in a RoI are computed as
presented in Table 2. It uses the RoI and corresponding nu-
clei segmentation map, denoted as Iseg. Area of a nucleus
x, denoted as A(x), is defined as the number of pixels be-
longing to x in Iseg. P (x), the perimeter of x, is measured
as the contour length of x in Iseg. PConvHull(x), the convex
hull perimeter of x, is defined as the contour length of con-
vex hull induced by x in Iseg. The major and minor axis
of x, noted as amajor(x) and aminor(x), are the longest di-
ameter of x and the longest line segment perpendicular to
amajor(x), respectively. The chromatin attributes are com-
puted from the normalized gray level co-occurrence matrix
(GLCM) [3], which captures the probability distribution of
co-occurring gray values in x.

4. Quantitative assessment

In this section, we analyze two key components of the
proposed quantitative metrics: the histogram construction
and class separability scores for threshold set K. Further-
more, we relate the analysis to the class-wise expected cri-
teria for each concept presented in Table 2.

4.1. Histogram analysis

Histogram construction is a key component in the pro-
posed quantitative metrics. Figure 1 presents per-class his-
tograms for each explainer and the best attribute per con-
cept. We set the importance threshold to k = 25, i.e. for
each RoI, we select 25 nuclei with the highest node impor-
tance. The best attribute for a concept is the one with the
highest average pair-wise class separability.

The row-wise observation exhibits that
GNNEXPLAINER and GRAPHLRP provide, respec-
tively, the maximum and the minimum pair-wise class
separability. The histograms for a concept and for an
explainer can be analyzed to assess the agreement between
the selected important nuclei concept, and the expected
concept behavior as presented in Table 2, for all the
classes. For instance, nuclear area is expected to be
higher for malignant RoIs than benign ones. The area
histograms for GNNEXPLAINER, GRAPHGRAD-CAM
and GRAPHGRAD-CAM++ indicate that the important
nuclei set in malignant RoIs includes nuclei with higher
area compared to benign RoIs. Similarly, the important
nuclei in malignant RoIs are expected to be vesicular, i.e.
high texture entropy, compared to light euchromatic, i.e.
moderate texture entropy, in benign RoIs. The chromaticity
histograms for GNNEXPLAINER, GRAPHGRAD-CAM
and GRAPHGRAD-CAM++ display this behavior. Addi-
tionally, the histogram analysis can reveal the important
concepts and important attributes. For instance, nuclear
density proves to be the least important concept for
differentiating the classes.

4.2. Separability score for threshold set K

Multiple importance thresholds K are required to ad-
dress the varying notion of important nuclei across differ-
ent cell graphs and different explainers. Figure 2 presents
the behavior of pair-wise class separability for using vari-
ous k ∈ K = {5, 10, ..., 50}. For simplicity, we present
the behavior for the best attribute per concept. In general,
the pair-wise class separability is observed to decrease with
decreasing k. Intuitively, decreasing k results in including
more unimportant nuclei into the evaluation, thereby grad-
ually decreasing the class separability.

The degree of agreement between the difference in the
expected behavior per concept and the pair-wise class sepa-
rability in Figure 2, for all pair-wise classifications and var-
ious k ∈ K can be used to assess the explainer’s quality.
For instance, according to Table 2, the difference in the ex-
pected nuclear size can be considered as benign–atypical
< benign–malignant, and atypical–malignant < benign–
malignant. GNNEXPLAINER, GRAPHGRAD-CAM and
GRAPHGRAD-CAM++ display these behaviors ∀k ∈ K.
GNNEXPLAINER provides the highest class separability in
each pair-wise classification, thus proving to be the best ex-



Metric Benign Atypical Malignant Total

Im
ag

e Number of images 1741 1351 1299 4391
Number of pixels (in million) 3.9±3.54 1.62±1.48 6.35±5.2 3.9±4.3
Max/Min pixel ratio 180.1 75.3 128.6 235.6

C
G

Number of nodes 1331±1134 635±510 2521±1934 1468±1642
Number of edges 4674±4131 2309±2110 8591±7646 5102±6089
Max/Min node ratio 312.5 416.7 312.5 434.8

Im
ag

e
sp

lit Train 1231 1008 928 3163
Validation 261 162 179 602
Test 249 185 192 626

Table 1. Statistics of BRACS dataset.

Concept (C) Attribute (A) Computation Benign Atypical Malignant

Size Area A(x) Small Small-Medium Medium-Large

Shape

Perimeter P (x)

Smooth Mild irregular IrregularRoughness PConvHull(x)
P (x)

Eccentricity aminor(x)
amajor(x)

Circularity 4πA(x))
P (x)2

Shape Shape factor 4πA(x)
P 2

ConvHull
Monomorphic Monomorphic Pleomorphicvariation

Spacing Mean spacing mean(dy|y ∈ kNN(x)) Evenly crowded Evenly spaced Variable
Std spacing std(dy|y ∈ kNN(x))

Chromatin

GLCM dissimilarity
∑
i

∑
j |i− j|p(i, j)

Light Hyperchromatic Vesicular

GLCM contrast
∑
i

∑
j(i− j)2p(i, j)

euchromatic
GLCM homogenity

∑
i

∑
j

p(i,j)
1+(i−j)2

GLCM ASM
∑
i

∑
j p(i, j)

2

GLCM entropy −
∑
i

∑
j p(i, j) log(p(i, j))

GLCM variance
∑
i

∑
j(i− µi)2p(i, j)

with µi =
∑
i

∑
j ip(i, j)

Table 2. Pathologically-understandable nuclear concepts, corresponding measurable attributes, and computations are shown in Columns 1,
2, 3, respectively. The expected concept behavior for three breast cancer subtypes is shown in Columns 4, 5, 6, respectively.

plainer pertaining to size concept. Detailed inspection of
Figure 2 shows that all the differences in the expected be-
havior, per concept for all pair-wise classifications, is inline
with the concept-wise expected behavior in Table 2, ∀c ∈ C
and ∀k ∈ K. Overall, GNNEXPLAINER is seen to be the
best explainer as it agrees to the majority of the expected
differences ∀c ∈ C for all pair-wise classifications, while
providing high-class separability. Furthermore, size proves
to be the most important concept that provides the maxi-
mum class separability across all pair-wise classifications.

5. Qualitative assessment

Figure 3 and Figure 4 present CG explanations
produced by GNNEXPLAINER, GRAPHGRAD-CAM,
GRAPHGRAD-CAM++ and GRAPHLRP for RoIs across
benign, atypical and malignant breast tumors. It can be
observed that GNNEXPLAINER learns to binarize the
explanations, thereby producing the most compact expla-
nations by retaining the most important nuclei set of nuclei
with high importance. However, GRAPHGRAD-CAM
and GRAPHGRAD-CAM++ produce explanations with
more distributed nuclei importance than GNNEXPLAINER.



GRAPHLRP produces the largest explanations by retaining
most of the nuclei in the CGs.
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Figure 1. Per-class histograms for different concepts across different graph explainers. For simplicity, histograms are presented for the best
attribute per concept at fixed importance threshold k = 25.



Figure 2. Visualizing the variation of pair-wise class separability score (Y-axis) w.r.t. various nuclei importance thresholds in K (X-axis).
The analysis is provided for different graph explainers, and for the best attribute per concept.



Figure 3. Qualitative results. The rows represent breast cancer subtypes, and columns represent graph explainers, i.e. GNNEXPLAINER,
GRAPHGRAD-CAM, GRAPHGRAD-CAM++, and GRAPHLRP. Nuclei level importance ranges from blue (the least important) to red
(the highest important).



Figure 4. Qualitative results. The rows represent breast cancer subtypes, and columns represent graph explainers, i.e. GNNEXPLAINER,
GRAPHGRAD-CAM, GRAPHGRAD-CAM++, and GRAPHLRP. Nuclei level importance ranges from blue (the least important) to red
(the highest important).


