
A. Supplementary material

A.1. Sampling error in UVgrids

We quantitatively measure how well the UV-grids approx-

imate the original surface geometry. We chose a random

selection of 132,492 models from the ABC dataset, and

converted them into our UV-grid representation: curves are

represented by grids with 10 points and unit tangents, while

surface are represented by 10×10 grids with points and unit

surface normals. We then compute four metrics, two re-

lated to edge curve approximation and two related to surface

approximation:

• Chordal error (curves): The distance between the cen-

ter of the line joining two points and the ground truth

curve evaluated at the average u parameter value of two

successive sample points.

• Chordal error (surfaces): The distance between the

average of four points defining a patch on a 10×10

point grid and the real surface evaluated at the average

(u, v) of the patch. This error metric is considering the

point grid as a bi-linear approximation of the surface.

• Bézier approximation error (curves): A cubic

Bézier span is constructed from the points and unit

tangent vectors following Equation 9.47 in [29]. The

Bézier approximation error is then taken as the aver-

age distance between the center of the Bézier and the

real edge curve evaluated at the average u parameter

value of the two sample points used to construct the

Bézier span.

• Bézier approximation error (surfaces): A cubic

Bézier patch is constructed from the 4 points and unit

normals following Equation 9.58 in [29]. The Bézier ap-

proximation error is then taken as the average distance

between the center of the patch, and the real surface

evaluated the central (u, v) parameter value. This error

metric is considering the point grid as a cubic Bézier ap-

proximation of the surface.

To allow these errors to be compared for solids of different

sizes we divide each by then longest length of the bounding

box of the entire solid.

As the neural network is passed ordered lists of edge

curve points and tangents and an ordered grid of points and

normals, the network has sufficient information to under-

stand the curve and surface information as a linear/bilinear

interpolation. Chordal errors of 89.19% surface patches and

93.33% curves are within 10−3 of the longest length of the

B-rep’s bounding box as shown in Table A.1.

The network also has access to curve tangent and surface

normal information. If we assume that the surface normal in-

formation can be used by the network then the approximation

error is further reduced and we find that the Bézier approx-

imation errors of 96.84% surface patches and 99.77% are

within 10−3 of the longest length of the B-rep’s bounding

box.

While it is unclear if the network actually uses this infor-

mation to build an interpolation of the curve/surface geom-

etry, this information is part of the input and is empirically

found to help in our ablation studies (see Section 4.4).

A.2. SolidLetters dataset

A publicly available, balanced, and labeled dataset is

vital to assist in designing and testing B-rep neural network

architectures. To this end, we create “SolidLetters”, a new,

synthetic, labeled dataset for solid models that includes both

geometric and topological variations. It comprises upper and

lower case letters in various styles obtained from a collection

of 2002 system and Google Fonts. Each data point has three

labels: (1) the alphabet, (2) the case (upper or lower), and

(3) the name of the font.

Creation We first create the outline of each letter with

every font (size 10) (Figure A.1a), and fill its interior with a

trimmed planar sheet surface, see Figure A.1b. Treating the

planar sheet as a profile surface on the XY-plane, we extrude

Table A.1: Percentage of curves and surfaces with approx-

imation errors exceeding various thresholds computed on

random samples from the ABC dataset.

Factor of

box size

Surfaces Curves

Bézier Chordal Bézier Chordal

Above 10
−3 3.16% 10.81% 0.23% 6.67%

Above 10
−2 0.80% 2.65% 0.06% 1.33%

Above 10
−1 0.09% 0.10% 0.02% 0.02%

(a) (b)

(c) (d)

Figure A.1: Running example of data generation. (a) 2D

wire B-rep going through boundary of the font face. (b)

Trimmed planar sheet filling the interior of the boundary. (c)

Extrude. (d) Fillet edges of the topmost face (SolidLetters).



0

500

1000

1500

2000

2500

3000

3500

4000

a b c d e f g h i j k l m n o p q r s t u v w x y z

Figure A.2: Per-class distribution of solids in the SolidLet-

ters dataset.

it along a vector e pointing upwards, see Figure A.1c. We

define this vector such that its head lies at a random point

in the spherical cap situated along the z-axis to introduce

variance in the extrusion direction. By sampling two random

numbers ξ1 and ξ2 from a uniform distribution U(0, 1), we

can define the vector e as: ex =
√

1− e
2
z
cos(2πξ2), ey =

√

1− e
2
z
sin(2πξ2), ez = ξ1(1− cos θ) + cos θ, where θ is

the angle subtended by the spherical cap that we set to 45◦.

Furthermore, to break the symmetry of the shape across the

XY-plane and introduce more complexity in the model, we

identify the topmost face in the extruded solid and perform

filleting by blending the edges with a constant radius 0.1,

see Figure A.1d. This introduces new curved faces in the

model along the edges of the topmost face, and changes the

topology as well. Filleting is prone to failure when the face

has edges that meet at sharp angles or the local thickness is

small compared to the filleting radius. Hence, we attempt to

fillet three times by successively reducing the filleting radius

by 50%, and upon failure leave the extruded solid as such.

After removing fonts that are non-English and symbols, we

end up with a total of 95,795 data points. There is an average

of 33 faces per solid in the dataset. The per-class distribution

of data is shown in Figure A.2. We show a visual overview

of the entire dataset in Figure A.3.

Data split We partition the dataset into an official 80-20

train-test split based on the complexity of the solids, which

can be roughly measured using the number of faces. We

place the solids in the datasets into three bins based on

the number of faces: [Fmin, F1), [F1, F2), [F2, Fmax], where

Fmin and Fmax are the minimum and maximum number

of faces in a solid in the entire dataset, respectively. F1

is defined as 0.15 × (Fmax − Fmin), while F2 is set to

0.30× (Fmax − Fmin). The solids in each bin are partitioned

randomly into an 80-20 train-test split and finally combined.

A.3. Other datasets

A.3.1 Machining feature

The Machining feature dataset [46] is available at github.

com/madlabub/Machining-feature-dataset.

The original train-test split information was not available, so

we created a random 85-15 split within each category, and

held out 20% of the training set for validation.

A.3.2 FabWave

The FabWave dataset [1] is available at dimelab.org/

fabwave. We use the subset of data that the authors call

“Standard" which contains mechanical part categories. There

are a total of 52 part categories, this is 4 less than what is

provided in the dataset because we removed some categories

that have very few or no models available in them. There

is no official train-test split, so we randomly partitioned the

data in a 80-20 ratio within each class. The data distribution

is shown in Figure A.4.

A.3.3 MFCAD

The MFCAD dataset [6] is available at github.com/

hducg/MFCAD. The dataset has 15,488 files (this is 2 more

than listed in the paper). The train-validation-test ratio is

60-20-20, and we use the official split shared by the authors

which partitions the models while considering the number

of labels per solid. Unlike the full set of labels described in

the paper, the dataset only has labels on planar faces. This is

likely because Cao et al. [6]’s method only supports planar

faces. There are a total of 350,295 faces in the dataset

classified into 16 segmentation categories. Some visual ex-

amples are shown in Figure A.5, and the class distribution in

Figure A.6.

A.3.4 ABC

The entire ABC dataset [23] consists of over 1 million

CAD assemblies containing over 13 million individual B-

rep bodies created by users of the Onshape CAD software.

It is available at deep-geometry.github.io/abc-

dataset. To use the dataset in our experiments we use

the following process to remove duplicates and generate

segmentation labels.

Duplication removal We remove duplicates from the ABC

dataset in four steps. All duplicate removal is performed at

the B-rep body level, rather than with assemblies.

1. Remove small files: A significant number of models in

the dataset are simple primitives that are unsuitable for

our experiments. We first remove models with a file size

of less than 15kB as a simple but effective proxy for

removing simple primitives.

2. Remove file duplicates and invalid files: We next re-

move exact file duplicates and invalid file type such as

.xmm_txt.



Figure A.3: Visual overview of the SolidLetters dataset.



0

100

200

300

400

500

600

700

800

B
ea

ri
n

g
s

B
o

lt
s

B
o

x
es

B
ra

ck
et

s

B
u

sh
in

g

B
u

sh
in

g
_

D
am

p
in

g
_
L

in
er

s

C
o

ll
et

s

C
o

tt
er

_
P

in
s

E
x
te

rn
al

_
R

et
ai

n
in

g
_

R
in

g
s

E
y
eb

o
lt

s_
W

it
h

_
S

h
o
u

ld
er

s

F
ix

ed
_
C

ap
_

F
la

n
g

e

F
o
rg

ed
_

P
ip

e_
F

la
n
g

e

G
as

k
et

G
ea

rs

G
ea

r_
R

o
d
_

S
to

ck

G
ro

m
m

et
s

H
ea

d
le

ss
_
S

cr
ew

s

H
ex

_
H

ea
d

_
S

cr
ew

s

H
o

le
b
o

lt
s_

W
it

h
_

S
h

o
u

ld
er

s

Id
le

r_
S

p
ro

ck
et

In
te

rn
al

_
G

ea
r

K
ey

w
ay

_
S

h
af

t

M
ac

h
in

e_
K

ey

M
it

er
_
G

ea
r_

S
et

_
S

cr
ew

N
u

ts

O
_

R
in

g
s

P
ip

es

P
ip

e_
F

it
ti

n
g

s

P
ip

e_
Jo

in
ts

P
u
sh

_
R

in
g
s

R
ec

ta
n
g

u
la

r_
G

ea
r_

R
ac

k

R
et

ai
n

in
g

_
R

in
g
s

R
o

ll
er

s

R
o

ta
ry

_
S

h
af

t

R
o

u
ti

n
g

_
E

y
eB

o
lt

s_
B

en
t_

C
lo

se
d
_

E
y
e

S
h
af

ts

S
h
af

t_
C

o
ll

ar

S
le

ev
e_

W
as

h
er

s

S
lo

tt
ed

_
F

la
t_

H
ea

d
_

S
cr

ew
s

S
o
ck

et
_

C
o
n

n
ec

t_
F

la
n
g

es

S
o
ck

et
_

H
ea

d
_
S

cr
ew

s

S
p
ri

n
g
s

S
p
ro

ck
et

s

S
p
ro

ck
et

_
T

ap
er

_
L

o
ck

_
B

u
sh

in
g

S
tr

u
t_

C
h

an
n
el

_
F

lo
o
r_

M
o

u
n

t

S
tr

u
t_

C
h

an
n
el

_
S

id
e_

S
id

e

T
ag

_
H

o
ld

er

T
h
u

m
b

_
S

cr
ew

s

U
n

th
re

ad
ed

_
F

la
n

g
es

W
as

h
er

s

W
eb

b
in

g
_
G

u
id

e_
C

o
n
n

ie
l

Figure A.4: Distribution of categories in the FabWave dataset.

stock

triangular_blind_step

6sides_passage

rectangular_through_slot

rectangular_blind_step

…

Figure A.5: Example 3D models from the MFCAD dataset,

colored by segmentation label.

0

20000

40000

60000

80000

100000

Figure A.6: Distribution of segmentation labels in the MF-

CAD dataset.

3. Remove non-solid and simple solids: We next remove

non-solid models, such as those containing only wires

or open solids, as well as simple solids with less than 30

faces.

4. Remove geometric duplicates: Finally we remove ge-

ometric duplicates by creating and comparing a unique

hash string for each model using the number of edges,

number of faces, number of shells, number of lumps,

area, volume, and moments of inertia. This approach is

efficient and invariant to rotation.

From the pool of unique models we choose a random sample

of 46k models to use in our experiments.

Segmentation labels Since the ABC dataset is unlabeled,

we create our own labels to test UV-Net’s segmentation

performance on a real-world dataset. We use the Autodesk

Shape Manager (ASM) [3] kernel to perform a rule-based

feature prediction for each of the faces in the solids. ASM

predicts the modeling operation that could have created the

face, e.g., chamfer, fillet, extrude and revolve. ASM is unable

to identify the modeling operation in some cases, and we

ignore such faces during training/testing. Additionally, it

also predicts whether the change made by the extrusion

was additive or subtractive. We consolidate this information

into labels as follows:

• Chamfer, Fillet and Revolve are retained as such. How-

ever, we notice that Chamfer and Revolve are virtually

non-existent in our data.

• In the case of extrusion, we utilize the extrude direction

and the surface normals of a sample of points in the visible

region of each face to make a fine-grained categorization.



ExtrudeSide

CutSide

Fillet Unknown

CutEnd …

Figure A.7: Example 3D models from the ABC dataset,

colored by segmentation label.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

Figure A.8: Distribution of segmentation labels in the ABC

dataset.

– If the normals and extrude direction are aligned, then

we set the label as ExtrudeEnd if the change type is

additive, and CutEnd if the change type is subtractive.

– If the normals and extrude direction are near perpendic-

ular, then we set the label as ExtrudeSide if the change

type is additive, and CutSide if the change type is sub-

tractive.

Our subset of the ABC dataset has a total of 4,218,036 faces.

Figure A.7 shows some example segmentation labels while

the label distribution shown in Figure A.8. The dataset is

split into train and test sets randomly in a 80-20 ratio.

A.4. Training details

Our implementation is in PyTorch and we use DGL (dgl.

ai) for graph operations. All experiments were conducted

on NVIDIA GV100, Quadro P6000, or Tesla V100 GPUs.

All networks in Section 4 are optimized using the Adam

optimizer with default parameters (learning rate: 0.001, β1:

0.9, β2: 0.999).

UV-Net’s mini-batches are created by concatenating the

nodes and edges of all the graphs in the batch to form a

supergraph. For all classification and segmentation experi-

ments, we used a batch size of 128 for UV-Net, PointNet, and

FeatureNet. We reduced the batch size to 64 for DGCNN,

due to its high memory consumption, and used the default

mini-batch size of 16 with MeshCNN. Contrastive learning

generally requires a higher batch size since the quality of

negative views depend on the data points in the mini-batch,

hence, we set it to 256 in this case. DGCNN has a hyperpa-

rameter k to define the number of k-nearest neighbors used

to build the graph dynamically in each of its layers. We set

this to 20 in the classification and segmentation experiments.

In the sensitivity to sampling study in Section 4.3, we set k

to 10 in the case of 1024 points, and 5 in the case of 512 and

256 points, so that the local neighborhood is well defined.

We adapted the following implementations for our com-

parisons:

• PointNet: we used the PyTorch implementation from the

official DGCNN code (github.com/WangYueFt/

dgcnn) for classification, and an unofficial imple-

mentation for segmentation (github.com/fxia22/

pointnet.pytorch).

• DGCNN: we used the official PyTorch implementation

available at github.com/WangYueFt/dgcnn for

classification. Since the segmentation implementation was

not available in the official version, we used another im-

plementation from github.com/AnTao97/dgcnn.

pytorch that is recommended by the authors.

• FeatureNet: we implemented this model based on the

network architecture provided in the paper [46].

• MeshCNN: we used the official implementation from

github.com/ranahanocka/MeshCNN.

A.5. Additional selfsupervised results

A.5.1 Ablation on CLR transformations

We perform an ablation study on the different transforma-

tions that we proposed to generate views for contrastive learn-

ing. We train our CLR model on the SolidLetters dataset

for 100 epochs while removing one transformation at a time.

While training for 100 epochs is not sufficient for the net-

work to converge, it gives us a fair understanding of the

importance of each transformation. The clustering and lin-

ear SVM classification scores are computed as described

in Section 4.2.3 and reported in Figure A.9. It is apparent

from the results that using all the proposed transformations

together is generally beneficial and improves the shape em-

beddings. It is important to note that the transformations

may have to be tuned for practical use cases based on the

dataset and potential downstream tasks. For example, the

right number of hops used to define the subgraphs may vary

based on the complexity of the B-reps in the dataset. We did

not explore this in our experiments, and directly applied the



40 45 50 55 60 65 70

No Drop Edges

No Drop Nodes

No Subgraph (n=1)

No Subgraph (n=2)

No Full graph

All transformations

Linear SVM Classification (%) K-Means Clustering (AMI)

Figure A.9: Ablation on the transformations used in con-

trastive learning.

method that gave best results in the SolidLetters dataset on

the ABC dataset.

A.5.2 Shape retrieval

Here we share more qualitative results for shape retrieval on

the SolidLetters and ABC datasets with k-nearest search in

the latent space generated by our contrastive learning method

in Figure A.10 and Figure A.11.



Figure A.10: More self-supervised shape retrieval results on SolidLetters. Column 1: Query, Columns 2–11: Retrieved results

sorted left to right by distance in latent space.



Figure A.11: More self-supervised shape retrieval results on ABC. Column 1: Query, Columns 2–11: Retrieved results sorted

left to right by distance in latent space.


