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1. Training Details
1.1. Training Setups

We organize optimizer details to train the feature extrac-
tor F and the transformer T in Table 1. The first pre-
training is done up to 500 epochs using the whole base
dataset, like regular supervised classification training. For
instance, we trained the backbone network with a simple
64 classes classifier for the miniImageNet dataset. We set
a single epoch to 100 episodes for training our modules.
The validation is performed after every training epochs. We
combine the OSR methods that use the prediction probabil-
ity to detect unknowns [2, 7], which observed that unseen
class samples are likely to have a low prediction probabil-
ity. We use random cropping, random scaling, random color
jittering, and random horizontal flipping to augment base
data. During the evaluation, we only use central cropping
to supports and queries.

We employed a temperature value in the distance func-
tion for stable training. It is formulated as follows:

dist(a, b) = ||(a− b)||22/τ, (1)

where τ is a temperature value, set to 64.

1.2. Modification on the FSL and OSR methods

In this subsection, we describe the details of our adjust-
ments of the FSL and OSR methods for the FSOSR com-
parison. The FSL methods [9, 12] create a logit vector with
negatives of distances between a query feature and proto-
types. Then they apply the softmax function on the logit
to calculate classification probabilities. Based on the OSR
methods, we use the negative of the prediction probability
to detect unknowns for FSL methods.

OpenMax [1] fits a Weibull model using logit vectors
for each known class. However, this is not directly appli-
cable to FSL problems since a class set formation differs
by episode. To this end, we fit Weibull models of relative
classes. For each episode, we assign relative labels to the
episodes, from one to five. The logit vectors are used to fit

Weibull models of the assigned classes, and mean activation
vectors for unknown class sample detection. NN [4] mea-
sures the distance between the query feature and the nearest
class feature, and the distance between that feature and the
second closest class feature. Then, the ratio of the distances
determines unknowns. We use distances from prototypes to
calculate the ratio.

2. Experimental Details
2.1. Detailed Results

We provide the detailed experimental results on miniIm-
ageNet and tieredImageNet with the confidence intervals in
Table 2 and Table 3, respectively. SnaTCHer excels in both
classification and detection.

2.2. Backbone architecture

We selected the ResNet-12 based architecture as a fea-
ture extractor for a fair comparison, following previous
FSL methods [5, 12]. We further explored the relation-
ship between the backbone architecture and network per-
formances by exchanging the backbone to the ResNet-18-
based architecture. Table 4 shows the ablation study result.
The ResNet-18 backbone shows slightly worse classifica-
tion performance than the ResNet-12 backbone. Thus, we
selected the ResNet-12-based architecture as the feature ex-
tractor.

2.3. Transformation analysis

We illustrate prototypes before and after the transforma-
tion to confirm the role of the transformation in Fig. 1. We
utilize SnaTCHer-F for the visualization. The difference of
the known-replaced set (i.e., between squares and crosses)
is smaller than that of the unknown-replaced set (i.e., be-
tween circles and crosses). The known query feature and
the unknown query feature are close in the projected figure.
Therefore it is hard to classify knowns and unknowns in the
naı̈ve approach. However, the difference after the transfor-
mation is notably increased after the relationship-based fea-
ture transformation. Since the transformation considers the
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F initialization F T
Optimizer type SGD SGD SGD
Learning rate 0.1 1× 10−4 1× 10−3

Momentum 0.9 0.9 0.9
Weight decay 5× 10−4 5× 10−4 5× 10−4

Learning rate scheduler MultiStep Step Step
Scheduler steps [350, 450, 440, 460, 480] 40 40
Scheduler gamma 0.1 0.5 0.5
Total epochs 500 200 200

Table 1. Optimizer details

miniImageNet 5-way
1-shot 5-shot

Model Acc AUROC Acc AUROC
ProtoNet [9] 64.01± 0.88 51.81± 0.93 80.09± 0.58 60.39± 0.92
FEAT [12] 67.02± 0.85 57.01± 0.84 82.02± 0.53 63.18± 0.78
NN [4] 63.82± 0.85 56.96± 0.75 80.12± 0.57 63.43± 0.76
OpenMax [1] 63.69± 0.84 62.64± 0.80 80.56± 0.58 62.27± 0.71
PEELER* [6] 58.31± 0.58 61.66± 0.62 75.08± 0.72 69.85± 0.70
PEELER [6] 65.86± 0.85 60.57± 0.83 80.61± 0.59 67.35± 0.80
SnaTCHer-F 67.02± 0.85 68.27± 0.96 82.02± 0.53 77.42± 0.73
SnaTCHer-T 66.60± 0.80 70.17± 0.88 81.77± 0.53 76.66± 0.78
SnaTCHer-L 67.60± 0.83 69.40± 0.92 82.36± 0.58 76.15± 0.83

Table 2. Average closed-set classification accuracies (%) and average unknown detection AUROCs (%) on miniImageNet over 600
episodes. PEELER* is quoted from the paper, which has a ResNet-18 backbone.

transformed features after the known-replacementa known query

an unknown query transformed features after the unknown-replacement

prototypes transformed prototypes

Figure 1. PCA projected prototypes before and after the modifi-
cation. The colors indicate classes of features. Squares indicate
the transformed features after exchanging the known query and its
corresponding prototype, and circles indicate that of the unknown
query.

relationships of all prototypes, the unknown sample fails to
reconstruct the set properly even though it can reconstruct
its predicted class prototype correctly (see the blue class ex-
ample).

2.4. Distance function

We utilized the Euclidean distance function for a fair
comparison with previous methods for logit calculations,
and used it for the unseen sample detection for consistency
with logits. We further investigated the influence of the dif-
ferent distance function choices on the unseen sample de-
tection. Table 5 shows the performance changes when we
use cosine distance for SnaTCHer-L. As pointed in various
FSL studies, the distance function impacts overall perfor-
mances.

2.5. Cross-domain FSOSR

We provide the detailed result of Table 3 in the
manuscript in Table 6.

Furthermore, we extended the cross-domain FSOSR
evaluation on Meta-Dataset [10]. Meta-Dataset consists of
train/validation/test splits of various datasets, including Im-
ageNet [8] and CUB [11]. All models are trained with
5-shot episodes from the ImageNet train split for evalu-
ations. We prepare three evaluation scenarios for cross-
domain FSOSR. The first case samples knowns from the
test split of ImageNet, and collects unknown instances from
the train splits of CUB presented in Meta-Dataset. We de-
note it as an ImageNet-CUB case. Similarly, we define a
CUB-ImageNet case and a CUB-CUB case to assess the
generalization capabilities of the FSOSR methods. Table 7
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tieredImageNet 5-way
1-shot 5-shot

Model Acc AUROC Acc AUROC
ProtoNet [9] 68.26± 0.96 60.73± 0.80 83.40± 0.65 64.96± 0.83
FEAT [12] 70.52± 0.96 63.54± 0.76 84.74± 0.69 70.74± 0.75
NN [4] 67.73± 0.96 62.70± 0.72 83.43± 0.66 69.77± 0.75
OpenMax [1] 68.28± 0.95 60.13± 0.74 83.48± 0.66 65.51± 0.83
PEELER [6] 69.51± 0.92 65.20± 0.76 84.10± 0.66 73.27± 0.71
SnaTCHer-F 70.52± 0.96 74.28± 0.80 84.74± 0.69 82.02± 0.64
SnaTCHer-T 70.45± 0.95 74.84± 0.79 84.42± 0.68 82.03± 0.66
SnaTCHer-L 70.85± 0.99 74.95± 0.83 85.23± 0.64 80.81± 0.68

Table 3. Average closed-set classification accuracies (%) and average unknown detection AUROCs (%) on tieredImageNet over 600
episodes.

1-shot 5-shot
Architecture Acc(%) AUROC(%) Acc(%) AUROC(%)
ResNet-12
PEELER [6] 65.86± 0.85 60.57± 0.83 80.61± 0.59 67.35± 0.80
SnaTCHer-F 67.02± 0.85 68.27± 0.96 82.02± 0.53 77.42± 0.73
SnaTCHer-T 66.60± 0.80 70.17± 0.88 81.77± 0.53 76.66± 0.78
SnaTCHer-L 67.60± 0.83 69.40± 0.92 82.36± 0.58 76.15± 0.83
ResNet-18
PEELER* [6] 58.31± 0.58 61.66± 0.62 75.08± 0.72 69.85± 0.70
PEELER [6] 64.03± 0.84 59.92± 0.85 77.60± 0.62 62.89± 0.83
SnaTCHer-F 66.83± 0.81 67.33± 0.78 81.74± 0.55 76.71± 0.75
SnaTCHer-T 66.86± 0.83 68.13± 0.99 80.56± 0.62 76.66± 0.77
SnaTCHer-L 66.38± 0.86 69.19± 0.96 81.09± 0.57 76.10± 0.81

Table 4. Backbone architecture comparison on miniImageNet 5-way tasks. PEELER* is quoted from the paper.

Function 5-way 1-shot 5-way 5-shot
Euclidean 69.40± 0.92 76.15± 0.83
Cosine 68.60± 0.94 75.45± 0.86

Table 5. AUROC (%) differences on the distance function. We
used 600 miniImageNet episodes for the comparison.

shows the result. When the known and unknown domains
are different, it is easier to detect unknowns. Therefore AU-
ROC values are large, even over 90% in the ImageNet-CUB
5-shot case. Overall, our methods show higher AUROC
values with comparable or better classification performance
than PEELER for all cases. On top of that, using the pre-
diction probability with the softmax operation shows poor
performance in the cross-domain cases. We illustrated the
histograms of normalized logit norm values and classifica-
tion probabilities of PEELER in Fig. 2. The smaller logit
norms indicate that the query sample is closer to the proto-
types. Since knowns are closer than the unknowns, the logit
norms are well separated. However, the softmax operation
uses relative distance information to calculate class predic-
tion probabilities. This sacrifices the distribution informa-
tion of samples, which makes it hard to distinguish known
samples from unknown samples. Therefore, using absolute
distances is better than using relative functions such as the
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Figure 2. The histograms of the normalized logit norm values and
classification probabilities of PEELER on the 600 5-way 1-shot
CUB-ImageNet episodes. The norm values are normalized to the
maximum norm value of the episode.

softmax function.

3. Layer-Task Normalization details
In this section, we provide deep analysis of our transfor-

mation method (LTN).

3.1. Weight generator details

LTN uses a weight generator, which creates a balance
parameter between the layer normalized and instance nor-
malized features. We describe the details of the generator
in Fig. 3. The max-pooling layer makes the generator sym-
metric.

3



tieredImageNet-CUB CUB-tieredImageNet CUB-CUB
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Model Acc AUROC Acc AUROC Acc AUROC Acc AUROC Acc AUROC Acc AUROC
PEELER [6] 69.51± 0.92 67.59± 0.88 84.10± 0.66 76.10± 0.87 58.81± 0.88 57.58± 0.69 77.66± 0.73 64.38± 0.73 59.42± 0.91 58.63± 0.68 78.42± 0.70 66.04± 0.70
SnaTCHer-F 70.52± 0.96 83.22± 0.83 84.74± 0.69 90.12± 0.59 57.81± 0.92 63.47± 0.78 77.33± 0.70 69.64± 0.68 57.98± 0.87 64.55± 0.75 77.05± 0.69 71.05± 0.73
SnaTCHer-T 70.45± 0.95 84.95± 0.70 84.42± 0.68 91.83± 0.47 57.84± 0.93 64.52± 0.76 77.77± 0.70 70.63± 0.70 57.82± 0.89 65.10± 0.76 77.66± 0.70 72.04± 0.66
SnaTCHer-L 70.85± 0.99 83.67± 0.82 85.23± 0.64 90.23± 0.58 60.21± 0.90 63.55± 0.73 79.27± 0.66 69.42± 0.66 59.69± 0.92 64.75± 0.74 78.68± 0.67 70.67± 0.66

Table 6. Detailed result of Table 3 in the manuscript.

ImageNet-CUB CUB-ImageNet CUB-CUB
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Model Acc AUROC Acc AUROC Acc AUROC Acc AUROC Acc AUROC Acc AUROC
PEELER [6] 50.51± 0.91 58.63± 1.21 73.38± 0.69 73.78± 1.01 62.28± 0.92 47.97± 1.23 82.33± 0.65 59.40± 1.47 62.62± 0.94 57.26± 0.81 82.44± 0.67 65.61± 0.88
SnaTCHer-F 59.86± 0.96 92.82± 0.48 77.14± 0.71 97.93± 0.14 65.79± 0.97 98.49± 0.17 84.52± 0.70 99.32± 0.10 66.92± 0.93 67.05± 0.81 84.73± 0.69 74.33± 0.68
SnaTCHer-T 59.05± 0.94 95.47± 0.49 77.26± 0.69 98.94± 0.16 66.02± 0.95 98.66± 0.19 86.54± 0.63 99.37± 0.10 65.48± 0.97 68.27± 0.85 85.80± 0.62 75.91± 0.68
SnaTCHer-L 58.86± 0.90 93.35± 0.70 76.86± 0.71 98.26± 0.24 68.11± 0.90 98.96± 0.15 87.36± 0.57 99.48± 0.10 67.90± 0.97 69.88± 0.78 87.30± 0.61 77.49± 0.64

Table 7. Cross-domain FSOSR comparison results on Meta-Dataset.

3.2. Fusing the normalization methods

In this subsection, we assess the effect of fusing instance
normalization and layer normalization. At first, we illus-
trate a histogram of the generated weight values in Fig. 4 to
analyze the importance of the normalization methods. High
weight values indicate that the contribution of LN is higher
than IN. This observation corresponds to the performance
difference between IN and LN in Table 1 in the manuscript,
which shows that LN is better than IN.

We further investigate the contribution of IN and LN by
fixing the weight value to zero and one, respectively. Ta-
ble 8 shows the comparison result. Here SnaTCHer-L-LN,
SnaTCHer-L-IN, and SnaTCHer-L share the same param-
eters except for the balance weight. SnaTCHer-L-LN set
the weight to one to assess layer normalization. On the
contrary, SnaTCHer-L-IN fixes the weight value to zero to
use instance normalization only. According to the table, us-
ing IN or LN alone is worse than use them both. This re-
sult validates our approach to use different normalization
methods altogether for better performances. Moreover, the
classification performance gap is larger in the 1-shot case.
Since supports in 1-shot scenarios are not enough to repre-
sent class characteristics than supports of 5-shot cases, the
combination with IN compensates exceptional support in-
stances of a class with large intra-class variance.

3.3. Classification way dependence

We study performance differences by changing the way
of episodes. Figure 5 shows the comparison result. Dur-
ing the comparison, we use the network trained with 1-shot
5-way episodes. The number of unknown classes is fixed
to five, and the number of supports per class is set to one
for all cases. The classification accuracy drops as the way
increases because the task becomes much more challeng-
ing. The detection AUROC also decreases since the inter-
class variance of the known classes increases. The larger
intra-class variance indicates a larger known feature space,
making it hard to distinguish unknown samples. Neverthe-
less, our method still outperforms the previous state-of-the-
art FSOSR method, displaying the broad applicability of
SnaTCHer.

Conv1d(640, 640, 1)
LeakyReLU(0.1)

Conv1d(640, 320, 1)
LeakyReLU(0.1)

AdaptiveMaxPool1d(1)

Conv1d(320, 128, 1)
LeakyReLU(0.1)

Conv1d(128, 1, 1)
Sigmoid

Input prototypes
(1, 640, 5)

Figure 3. The weight generator structure details with a 5-way task.
The layers are described in PyTorch function styles.
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Figure 4. The histogram of the weight values over 600 5-way 5-
shot tasks on tieredImageNet.
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1-shot 5-shot
Architecture Acc(%) AUROC(%) Acc(%) AUROC(%)
SnaTCHer-L-IN 47.58± 1.03 66.06± 0.79 53.15± 1.18 71.01± 0.67
SnaTCHer-L-LN 66.88± 0.83 69.30± 0.93 82.27± 0.52 76.09± 0.84
SnaTCHer-L 67.60± 0.83 69.40± 0.92 82.36± 0.58 76.15± 0.83

Table 8. Normalization analysis on miniImageNet 5-way tasks. SnaTCHer-L-IN and SnaTCHer-L-LN use IN and LN only, respectively.
All parameters are trained with SnaTCHer-L.
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Figure 5. The performances changes over different way configura-
tions. The network is trained on 1-shot 5-way tasks. We set differ-
ent number of classes (5, 10, 15, 20) to compare performances.

4. Threshold analysis

The unseen detection performance varies by the thresh-
old value even if we use the same model with the same
parameters. This nature interferes with a fair comparison
of unseen sample detection methods. Recent studies have
proposed various evaluation methods to reduce the effect of
evaluation hyperparameter settings during comparisons.

In the manuscript, we employed AUROC to compare
performances. AUROC measures false positive rate and
true positive rate changes by varying the threshold values,
free from the threshold decision. Therefore, it is widely
used in recent methods to compare unseen sample detection
performances [7, 6, 3]. In line with previous studies, we
utilized AUROC to compare detection performances.

Architecture Accuracy (%) F1-score AUROC (%)
SnaTCHer-F 55.44 0.6904 82.02
SnaTCHer-T 54.42 0.6865 82.03
SnaTCHer-L 70.82 0.7376 80.81

Table 9. Unseen sample detection comparison on 600 tieredIma-
geNet 5-way 5-shot episodes.

Nevertheless, determining the threshold value for the un-
seen detection is important to use the models in real-world
problems. Since the threshold should adapt to different
episodes, we propose to use the difference between the aver-
age of prototypes and its farthest prototype for FSOSR. The
comparison result is reported in Table 9. As evident from
the table, the threshold decision strategy should be depen-
dent on the transformation function for better performance.
SnaTCHer-F and SnaTCHer-T show poor performances
though they have similar AUROC values with the others.
This observation emphasizes the need to use parameter-free
measurements for performance comparisons. Furthermore,
this result shows that the threshold decision method needs
more attention of the society.
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