
Appendix

S1. Implementation Details
In this section, we provide more implementation details

in our work.

Training details. For CycleGAN and Pix2pix models, we
use batch size of 32 for teacher and batch size of 80 for stu-
dent, while for GauGAN, the batch size is set to 16 for both.
For each model and each dataset, we apply the same train-
ing epochs for teacher and student networks. The learning
rate for both generators and discriminators are set as 0.0002
for all datasets and models. More detailed training hyper-
parameters are summarized in Table S1. For the layers used
for knowledge distillation between teacher and student net-
works, we follow the same strategy as Li et al. [36]. Specif-
ically, for Pix2pix and CycleGAN models, the 9 residual
blocks are divided into 3 groups, each with three consec-
utive layers, and knowledge is distilled upon the four ac-
tivations from each end layer of these three groups. For
GauGAN models, knowledge distillation is applied on the
output activations of 3 from the total 7 SPADE blocks, in-
cluding the first, third and fifth ones.

More details for normalization layers. We find that in-
stance normalization [69] without tracking running statis-
tics is critical for dataset Horse→Zebra to achieve good
performance on the student model, and for dataset
Zebra→Horse, synchronized batch normalization with
tracked running statistics gives better performance. For the
other datasets batch normalization [28] with tracked run-
ning statistics is better. Normalization layers without track
running statistics introduce extra computation cost, and we
take this into account for our calculation of MACs during
pruning. Moreover, for GauGAN, we use synchronized
batch normalization as suggested by previous work [58, 67],
and remove the spectral norm [55] as we find it does not
have much impact on the model performance.

Network details for GauGAN. For GauGAN, we find it
is sufficient for each spade residual block to keep only the
first SPADE module in the main body while replace the sec-
ond one as well as the one in the shortcut by synchronized
batch normalization layer. This saves computation cost by a
large extent. Besides, we use learnable weights for the sec-
ond synchronized block for the purpose of pruning. These
weights do not introduce extra computation cost, as the run-
ning statistics are estimated from training data and not re-
calculated during inference, enabling fusing normalization
layers into the convolution layers. Further, we replace the
three convolution layers in the SPADE module by our pro-
posed inception-based residual block (IncResBlock), with

normalization layers included for pruning. The details for
the architecture are illustrated in Figure S1. We name our
SPADE module as IncSPADE and SPADE residual block as
IncSPADE ResBlk.

To prune the input channel for each model, we add an
extra normalization layer (synchronized batch normaliza-
tion) with learnable weights after the first fully-connected
layer, and prune its channels together with other normaliza-
tions using our pruning algorithm described in the Section
3.2 of the main paper. During pruning, we keep the ratio
of input channels between different layers as the original
model, and the lower bound for the first layer (which has the
largest number of channels) is determined by that for the last
layer multiplied by the channel ratio, so that all channels are
above the bound and the channel ratio is unchanged.

S2. Ablation Analysis of Knowledge Distilla-
tion

Here we show the ablation analysis for knowledge dis-
tillation methods. We use our searching method to find a
student architecture on Pix2pix task using the Cityscapes
dataset, and compare student training without knowledge
distillation, with MSE distillation as in [36], and the
similarity-based distillation we proposed. The results are
summarized in Tab. S2, where w/o Distillation denotes
training the student without distillation, and w/ MSE; Loss
Weight 0.5 and w/ MSE; Loss Weight 1.0 denotes MSE dis-
tillation with weight 0.5 and 1.0, respectively. We find that
distillation indeed improves performance, and our distilla-
tion method, which employs GKA to maximize feature sim-
ilarity, is better than MSE on transferring knowledge from
teacher to student via intermediate features.

S3. More Qualitative Results
We show more qualitative results for CycleGAN on

Horse�Zebra and Zebra�Horse, Pix2pix on Map�Aerial
photo, as well as GauGAN on Cityscapes in Figs. S2, S3,
S4, and S5, respectively.



Table S1: Hyper-parameter setting for teacher and student training.

Model Dataset
Training Epochs

λdistill λrecon λfm GAN Loss
ngf

ndf
Const Decay Teacher

CycleGAN Horse�Zebra 500 500 1 5 - LSGAN 64 64
Zebra�Horse 500 500 0.1 5 - LSGAN 64 64

Pix2pix Cityscapes 500 750 0.5 100 - Hinge 64 128
Map�Aerial photo 500 1000 1.3 100 - Hinge 64 128

GauGAN Cityscapes 100 100 0.5 10 10 Hinge 64 64
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Figure S1: SPADE normalization module (IncSPADE, left) and SPADE residual block (IncSPADE ResBlk, right) with the
proposed Inception Resblock (orange hexagon). Note that the optional last normalization layer and residual connection are
not applied in the Inception Resblocks that are used in IncSPADE and IncSPADE ResBlk.

Table S2: Analysis of knowledge distillation methods on
Cityscapes dataset with the Pix2pix setting. Our methods
(GKA) achieves the best result.

Method mIoU↑
w/o Distillation 39.39

w/ MSE; Loss Weight 0.5 39.83
w/ MSE; Loss Weight 1.0 39.76

Ours 42.53
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Figure S2: More results on Horse�Zebra dataset. Compared with original CycleGAN, our model has much reduced MACs
and can generate images with higher fidelity (lower FID).
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Figure S3: Results on Zebra�Horse dataset. Compared with original CycleGAN, our model has much reduced MACs and
can generate images with higher fidelity (lower FID).
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Figure S4: More results on Map�Aerial photo dataset. Compared with original Pix2pix, our model has much reduced MACs
and can generate images with higher fidelity (lower FID).
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Figure S5: More qualitative results on Cityscapes dataset. Images generated by our compressed model (CAT-A, third row)
have higher mIoU and lower FID than the original GauGAN model (fifth row), even with much reduced computational cost.
For our CAT-B model (fourth row, 50.9× compressed than GauGAN), although it has lower mIoU, the CAT-B model can
synthesize higher fidelity images (lower FID) than GauGAN.


