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A. More Comparisons
With RAISR RAISR [9] works in two-stage that con-
sists of a global and a local enhancement, with the latter
part using a hash table. They compute image gradient and
SVD for each patch of the input image for hash table keys,
and this would take more computation time than our inter-
polation step. We note that a direct comparison is difficult
with RAISR as the code is not publicly available. We can
estimate the runtime of RAISR as roughly 97ms when run-
ning on our desktop computer (Intel Xeon CPU E3- 1230 v3
@ 3.30GHz with 32GB RAM), by comparing the reported
runtime of A+ in RAISR paper and our paper. In addition,
an unofficial implementation of RAISR1 takes 2.6s on the
same machine.
With Other Deep SR Models Some methods which
have not been compared with are – PAMS [7], BSRN [14],
FALSR [4], ESRN [10] and TPSR [6]. They made valuable
efforts to improve the efficiency of deep SR models but they
still consist of a number of convolutional layers. We show
some quantitative comparisons in Table 1. It is difficult to
compare runtimes directly because the codes are not avail-
able (except for PAMS), however, we can roughly estimate
the runtimes of each method based on the model size and
the number of multiplication-addition operations. Based on
the runtime of FSRCNN, we can conclude that our method
is much faster and efficient than the others. However, the
deep SR methods show good PSNR.

B. More Results
We show some examples for natural textures and faces in

Fig. 1, which show very comparable methods to ANR [11]
and A+ [12]. The images are from Set14 and CelebA [8]
testsets. The results show similar visual impression in the
texture images, but our method shows partly unsmooth re-
sults in the face images due to the limited RF size. This may
disappear if trained using the images in CelebA, or consid-
ering more RF would be a key factor for better performance
in the future. However, our method runs much faster than
ANR and A+. In addition, we expect that our method will

1https://github.com/JalaliLabUCLA/Jalali-Lab-
Implementation-of-RAISR

Method Ours-S FSRCNN TPSR PAMS FALSR ESRN BSRN

Runtime 91ms 371ms - - - - -
Ops 276M 6G 3.6G - 74.7G 85G 20.7G
Size 1.274MB 12K† 61K† 484K† 326K† 324K† 1216K†

Set5 29.82 30.71 29.60 31.59 - 31.99 31.35

Table 1. Quantitative comparisons with other deep SR mod-
els. We can roughly estimate the runtimes of each method
by comparing the number of multiplication-addition opera-
tions and the model size. †: The number of parameters of
DNN.

Bicubic ANR Ours-S A+ GT

Figure 1. Visual comparisons with the comparable methods
on textures and face images.
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also perform better than the bicubic interpolation in a real
SR data [2].

We also show quantitative results for the upscaling factor
r = 2 and 3 in Table 2 and Table 3 respectively. Note that
we report the results of RCAN [16] instead of RRDB [13]
because RRDB has no reference model for r = 2 and 3. In
addition, visual results for the upscaling factor r = 2 and
3 is shown in Fig. 2 and Fig. 3 respectively. Ours-F results
show better performance in terms of PSNR and SSIM, but
Ours-S results show better visual quality. A noticeable dif-
ference is not shown in Fig. 2, however, the difference looks
more noticeable as the upscale factor gets larger.
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Method Size Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Interpolation
Nearest - 30.82 0.8991 28.51 0.8446 28.39 0.8239 25.62 0.8199 28.12 0.9089
Bilinear - 32.12 0.9106 29.15 0.8384 28.65 0.8090 25.95 0.8077 29.13 0.9115
Bicubic - 33.63 0.9292 30.23 0.8681 29.53 0.8421 26.86 0.8394 30.78 0.9338

SR-LUT
Ours-V 1MB 34.79 0.9420 31.32 0.8907 30.34 0.8692 27.95 0.8689 33.23 0.9535
Ours-F 77KB 35.64 0.9475 31.88 0.8991 30.77 0.8787 28.49 0.8784 34.43 0.9600
Ours-S 1.274MB 35.46 0.9466 31.73 0.8958 30.64 0.8750 28.50 0.8777 33.87 0.9579

Sparse coding

NE + LLE [3] 1.434MB 35.79 0.9491 31.82 0.8996 30.77 0.8787 28.48 0.8803 33.95 0.9590
Zeyde et al. [15] 1.434MB 35.79 0.9494 31.87 0.8989 30.77 0.8771 28.47 0.8794 34.06 0.9599
ANR [11] 1.434MB 35.85 0.9500 31.86 0.9006 30.82 0.8800 28.49 0.8807 33.94 0.9597
A+ [12] 15.171MB 36.57 0.9545 32.34 0.9056 31.21 0.8860 29.23 0.8938 35.32 0.9670

DNN
FSRCNN [5] 12K† 37.00 0.9555 32.69 0.9086 31.49 0.8902 29.87 0.9007 36.61 0.9704
CARN-M [1] 412K† 37.42 0.9583 33.17 0.9136 31.88 0.8960 31.23 0.9192 37.60 0.9740
RCAN [16] 15445K† 38.17 0.9604 34.03 0.9202 32.37 0.9016 33.30 0.9376 39.32 0.9777

Table 2. Quantitative comparisons on 5 common single-image SR testsets for r = 2. Best values are shown in bold among
our models. †: The number of parameters of DNN.

Method Size Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Interpolation
Nearest - 27.93 0.8123 26.00 0.7330 26.17 0.7065 23.34 0.6992 25.04 0.8157
Bilinear - 29.54 0.8504 26.96 0.7526 26.77 0.7177 23.99 0.7135 26.15 0.8372
Bicubic - 30.40 0.8678 27.55 0.7736 27.20 0.7379 24.45 0.7343 26.94 0.8554

SR-LUT
Ours-V 1MB 31.29 0.8861 28.33 0.7984 27.68 0.7625 25.13 0.7641 28.72 0.8882
Ours-F 77KB 31.88 0.8947 28.72 0.8088 27.97 0.7734 25.46 0.7751 29.44 0.8977
Ours-S 1.274MB 31.95 0.8969 28.73 0.8057 27.92 0.7690 25.53 0.7750 29.32 0.8970

Sparse coding

NE + LLE [3] 1.434MB 31.87 0.8958 28.64 0.8085 27.92 0.7727 25.41 0.7755 28.70 0.8889
Zeyde et al. [15] 1.434MB 31.93 0.8969 28.70 0.8079 27.95 0.7715 25.45 0.7761 28.85 0.8920
ANR [11] 1.434MB 31.95 0.8970 28.69 0.8102 27.96 0.7745 25.45 0.7768 28.78 0.8900
A+ [12] 15.171MB 32.63 0.9090 29.16 0.8190 28.28 0.7832 26.04 0.7974 29.90 0.9099

DNN
FSRCNN [5] 12K† 33.19 0.9139 28.61 0.8007 28.50 0.7889 26.42 0.8062 31.07 0.9198
CARN-M [1] 412K† 34.00 0.9235 29.99 0.8357 28.90 0.8001 27.55 0.8384 32.82 0.9385
RCAN [16] 15445K† 34.71 0.9287 30.55 0.8463 29.30 0.8101 29.07 0.8694 34.40 0.9489

Table 3. Quantitative comparisons on 5 common single-image SR testsets for r = 3. †: The number of parameters of DNN.
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Figure 2. Qualitative results for r = 2. A visual difference is hardly noticeable except for the results of bicubic interpolation
and ANR.

Bicubic ANR [11] Ours-V Ours-F Ours-S A+ [12] FSRCNN [5] GT

Figure 3. Qualitative results for r = 3. Similar to the results for r = 4 in the main paper, Ours-S shows the best visual quality
among our models, by having smooth edge especially for diagonal direction.
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