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A. Justification for Using Affine Transforma-
tion

The key ideas of our work are the new training scheme
and the concept of the adaptive target. We chose affine
transformation as a way to validate our idea since it is a
simple and basic method in handling geometric deforma-
tion. There are other options such as projective transfor-
mation or a deformation field. However, as shown in Table
5 in the main paper, Tr + Rot model already shows better
performance than Tr + Rot + Shear + Scale model. We in-
fer that above a certain level of flexibility in transformation,
the transformation alters the original contents in an undesir-
able way for SR, and we chose affine transformation for its
simplicity and effectiveness.

We would also like to point out that we use 7× 7 patch-
level affine transformation, not a single transformation for
the whole image for flexibility. We conducted additional
empirical analysis on the effectiveness of the patch-level
affine transformation. We gathered 10 HR patches yj which
are approximately mapped to the same LR patch x using
corresponding kernels kj as follows:

x ≈ (yj ∗ kj) ↓s, (1)

where j ∈ [1, 10] denotes the index of different HRs and
s = 4. By using our ATG, we generated y1→2, ..., y1→10

(i.e. y1→m = ATG(y1, ym) where m ∈ [2, 10]). To check
how accurate the generated results are, we compared PSNR
values before and after the transformation by computing
PSNR(y1, ym) and PSNR(y1→m, ym) respectively. We
computed this for 130 texture regions (total 1300 samples)
and the mean PSNR improves from 23.80 to 28.82. In com-
parison, RANSAC based optimization with SIFT features
for image-level affine and perspective transformation shows
the PSNR values of 24.06 and 24.08 respectively which are
much lower than ours. This experiment empirically shows
that our approach is effective for 1) modeling the small dif-
ference in HR images which all map to the same LR image
and 2) preserving the original contents. Note that it was dif-
ficult to apply the conventional optimization to estimate the
patch-level transformation due to the difficulty of extracting

features in our small 7×7 input. On the other hand, ATG es-
timates affine matrix in a single-shot manner and was fine-
tuned together with SR net to maximize the performance.

B. User Study
We conducted user studies on both blind and non-blind

SR (bicubic downsampling) to verify the perceptual satis-
faction of our results. In the user studies, we show 4 patches
of images from different methods to participants and ask
them to determine the ranking according to the visual qual-
ity. Our user interface for the user study is shown in Fig. 1,
and we provide a movable box to let the participants see
everywhere in a given image.

For the blind SR survey, IKC [4], KG [1] + ZSSR [9],
and SRMD [14] are used for comparisons on Gaussian8
[4] testset for isotropic Gaussian kernels and DIV2KRK [1]
testset for random kernels. Note that the results of SRMD
are reproduced using GT kernel information. For the Gaus-
sian8 testset, we select 10 images from Urban100 [5] for
σ = 1.8 and σ = 3.2, therefore, total 20 images are
used. We also select 20 images for the DIV2KRK testset.
For non-blind SR survey, ESRGAN [12], NatSR [11], and
RankSRGAN [15] are used for comparisons on selected 20
images from Urban100 testset.

The comparison is performed 30 times for each image.
The surveys are conducted with Amazon Mechanical Turk,
and the results are shown in Fig. 2. For the confidence of the
results, we do a sanity check using questions with an obvi-
ous answer. All responses from the participants who failed
to pass the sanity check are excluded for the final results.
Rank 1 is for the best quality, and rank 4 is for the worst
one. In all comparisons, people mostly prefer our results on
average.

C. More Results
More visual results of blind SR on Gaussian8 and

DIV2KRK testsets are shown in Fig. 3 and Fig. 4 respec-
tively. Also, more visual results of non-blind SR (bicubic
downsampling) are shown in Fig. 5. The overall clarity is
improved by applying our method.
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Figure 1. Our user interface for the user study. Participants are asked to rank among 4 images. Users can watch different
areas by dragging the red box.
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(a) Isotropic Gaussian kernels .
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(b) Random kernels.
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(c) Bicubic downsampling .

Figure 2. The results of user studies. (a) Blind SR results on Gaussian8 testset. (b) Blind SR results on DIV2KRK testset.
(c) Non-blind SR (bicubic downsampling) results on Urban100 testset. Our results mostly get rank 1 for the all surveys.

In addition, we verified that our method is also effective
for real-world single-image SR. We follow the same exper-
imental setting as in the main paper, specifically, we trained
RRDB [12] network with our ATG by using a dataset pro-
posed in [3]. For the upscaling factor 4, we achieved 29.03
PSNR value for the 100 test images, and it is better than the
winner of the NTIRE 2019 challenge [2].
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KG [1] + ZSSR [9] IKC [4] Ours MZSR [10] SRMD [14] USRNet [13] GT

(a) σ = 1.8

KG [1] + ZSSR [9] IKC [4] Ours MZSR [10] SRMD [14] USRNet [13] GT

N/A

(b) σ = 3.2

Figure 3. More visual results on Gaussian8 testset for isotropic Gaussian kernels. (a) The results for the kernel width 1.8 and
(b) 3.2. Our results successfully restore sharp edges and look closer to the GT.
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Blur kernel KG [1] + ZSSR [9] IKC [4] Ours MZSR [10] SRMD [14] USRNet [13] GT

Figure 4. More visual results on DIV2KRK testset for random kernels. Each low-resolution test image is simulated by
different blur kernels shown on the left. Our results show obvious sharpness and clarity compared to other results regardless
of the kernel shapes.
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SRGAN [6] EnhanceNet [8] SRFeat [7] NatSR [11] RankSRGAN [15] ESRGAN [12] Ours (ESRGAN) GT

N/A

N/A

N/A

N/A

Figure 5. More visual results for non-blind SR (bicubic downsampling). Our method generates consistent details that
correspond to the GT.
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