Supplementary Material

In this supplementary material, we provide additional
details which we could not include in the main paper due
to space constraints, including experimental analysis, im-
plementation details, discussion and results that help us de-
velop further insights to the proposed Open World Object
Detection approach. We discuss:

e Sensitivity analysis on queue size of Feature Store, the
momentum parameter 7, margin in clustering loss A
and temperature parameter in energy computation.

e Additional details on contrastive clustering

e More specific implementation details.

e Discussion regarding failure cases.

e Related works in incremental object detection.

e Some qualitative results of ORE.

A. Varying the Queue Size of Fg;,,.

In Sec. 4.1, we explain how class specific queues g; are
used to store the feature vectors, which are used to compute
the class prototypes. A hyper-parameter Q controls the size
of each g;. Here we vary Q, while learning Task 1, and re-
port the results in Tab. 7. We observe relatively similar per-
formance, across experiments with different Q values. This
can be attributed to the fact that after a prototype is defined,
it gets periodically updated with newly observed features,
thus effectively evolving itself. Hence, the actual number
of features used to compute those prototypes (P and Pp,ew)
is not very significant. We use Q = 20 for all the experi-
ments.

Q| WI()) A-OSE(}) mAP (")
5 | 0.02402 8123 56.01
10 | 0.02523 8126 56.02
20 | 0.02193 8234 56.34
30 | 0.02688 8487 55.78
50 | 0.02623 8578 56.22

Table 7: We find that varying the number of features that are used
to compute the class prototype does not have a huge impact on the
performance.

B. Sensitivity Analysis on 7

The momentum parameter 1 controls how rapidly the
class prototypes are updated, as elaborated in Algorithm 1.
Larger values of 7 imply smaller effect of the newly com-
puted prototypes on the current class prototypes. We find
from Tab. 8 that performance improves when prototypes are
updated slowly (larger values of 7). This result is intuitive,
as slowly changing the cluster centers helps stabilize con-
trastive learning.

n | WL() A-OSE() mAP (1)
0.4 | 0.05926 9476 55.96
0.6 | 0.04977 9095 55.56
0.8 | 0.02945 8375 55.73
0.9 | 0.02193 8234 56.34

Table 8: We see that higher values of 7 gives better performance,
implying that gradual evolution of class prototypes improves con-
trastive clustering.

C. Varying the Margin (A) in L.,

The margin parameter A in the contrastive clustering
loss Lcont (Eqn. 1) defines the minimum distance that an
input feature vector should keep from dissimilar class pro-
totypes in the latent space. As we see in Tab. 9, increasing
the margin while learning the first task, increases the per-
formance on the known classes and how unknown classes
are handled. This would imply that larger separation in the
latent space is beneficial for ORE.

A | WI(}) A-OSE(}) mAP(D)
5 | 0.04094 9300 55.73
10 | 0.02193 8234 56.34
15 | 0.01049 8088 56.65

Table 9: Increasing the margin A, improves the performance on
known and unknown classes, concurring with our assumption that
separation in the latent space is beneficial for ORE.

D. Varying the Temperature (7') in Eqn. 4

We fixed the temperature parameter (1) in Eqn. 4 to 1
in all the experiments. Softening the energies a bit more
to T' = 2, gives slight improvement in unknown detection,
however increasing it further hurts as evident from Tab. 10.

T | WI) A-OSE(l) mAP(})
1 | 00219 8234 56.34
2 100214 8057 55.68
3 100411 11266 55.51
5 100836 12063 56.25

—_

0 | 0.0835 12064 56.31

Table 10: There is a nice ballpark for temperature parameter be-
tween T' = 1 and T' = 2, which gives the optimal performance.

E. More Details on Contrastive Clustering

The motivation for using contrastive clustering to en-
sure separation in the latent space is two-fold: 1) it en-
ables the model to cluster unknowns separately from known
instances, thus boosting unknown identification; 2) it en-
sures instances of each class are well-separated from other
classes, alleviating the forgetting issue.
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Figure 6: Rol head architecture, showing 2048-dim feature vector
used for contrastive clustering.

The 2048-dim feature vector that comes out from resid-
ual blocks of Rol head (Fig 6) is contrastively clustered.
The contrastive loss is added to the Faster R-CNN loss and
the entire network is trained end-to-end. Thus all parts of
the network before and including the residual block in the
Rol head in the Faster R-CNN pipeline will get updated
with the gradients from the contrastive clustering loss.

F. Further Implementation Details

We complete the discussion related to the implementa-
tion details, that we had in Sec. 5.2 here. We ran our ex-
periments on a server with 8 Nvidia V100 GPUs with an
effective batch size of 8. We use SGD with a learning rate
of 0.01. Each task is learned for 8 epochs (~ 50k itera-
tions). The queue size of the feature store is set to 20. We
initiate clustering after 1k iterations and update the clus-
ter prototypes after each 3k iterations with a momentum
parameter of 0.99. Euclidean distance is used as the dis-
tance function D in Eqn. 1. The margin (A) is set as 10.
For auto-labelling the unknowns in the RPN, we pick the
top-1 background proposal, sorted by its objectness score.
The temperature parameter in the energy based classifica-
tion head is set to 1. The code is implemented in Py-
Torch [44] using Detectron 2 [63]. Reliability library [53]
was used for modelling the energy distributions. We re-
lease all our codes publicly for foster reproducible research:
https://github.com/JosephKJ/OWOD.

G. Related Work on Incremental Object Detec-
tion

The class-incremental object detection (i0OD) setting consid-
ers classes to be observed incrementally over time and that the
learner must adapt without retraining on old classes from scratch.
The prevalent approaches [01, 28, 18, 7] use knowledge distilla-
tion [21] as a regularization measure to avoid forgetting old class
information while training on new classes. Specifically, Shmelkov
et al. [61] repurpose Fast R-CNN for incremental learning by dis-
tilling classification and regression outputs from a previous stage
model. Beside distilling model outputs, Chen et al. [7] and Li et
al. [28] also distilled the intermediate network features. Hao et
al. [ 18] builds on Faster R-CNN and uses a student-teacher frame-
work for RPN adaptation. Acharya et al. [1] proposes a replay
mechanism for online detection. Recently, Peng ez al. [45] intro-
duces an adaptive distillation technique into Faster R-CNN. Their
methodology is the current state-of-the-art in iOD. These methods
cannot however work in an Open World environment, which is the
focus of this work, and are unable to identify unknown objects.

H. Time and Storage Expense:

The training and inference of ORE takes an additional 0.1349
sec/iter and 0.009 sec/iter than standard Faster R-CNN. The stor-
age expense for maintaining Fis:ore is negligible, and the exemplar
memory (for Ne, = 50) takes approximately 34 MB.

I. Using Softmax based Unknown Identifier

We modified the unknown identification criteria to
max(softmax(logits)) < t. For t = {0.3,0.5,0.7}: A-OSE, WI and
mAP (mean and std-dev) are 11815 + 352.13, 0.0436 + 0.009
and 55.22 4 0.02. This is inferior to ORE.

J. Qualitative Results

We show qualitative results of ORE in Fig. 8 through Fig. 13.
We see that ORE is able to identify a variety of unknown instances
and incrementally learn them, using the proposed contrastive
clustering and energy-based unknown identification methodology.
Sub-figure (a) in all these images shows the identified unknown
instances along with the the other instances known to the detector.
The corresponding sub-figure (b), shows the detections from the
same detector after the new classes are incrementally added.

K. Discussion Regarding Failure Cases

Occlusions and crowding of objects are cases where our
method tends to get confused (external-storage, walkman
and bag not detected as unknown in Figs. 11, 13). Difficult
viewpoints (such as backside) also lead to some misclassifications
(giraffe—horse in Figs. 4, 12). We have also noticed that
detecting small unknown objects co-occurring with larger known
objects is hard. As ORE is the first effort in this direction, we hope
these identified shortcomings would be basis of further research.

(b)

Figure 7: ORE trained on just Task 1, successfully localises a
kite as an unknown in sub-figure (a), while after learning about
kite in Task 3, it incrementally learns to detect both kite and
aeroplane in sub-figure (b).
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Figure 8: The sub-figure (a) is the result produced by ORE after learning Task 2. As Task 3 classes like apple and orange has not
been introduced, ORE identifies it and correctly labels them as unknown. After learning Task 3, these instances are labelled correctly in
sub-figure (b). An unidentified class instance still remains, and ORE successfully detects it as unknown.

Figure 9: The clock class is eventually learned as part of Task 4 (in sub-figure (b)), after being initially identified as unknown (in
sub-figure (a)). ORE exhibits the true characteristics of an Open World detector, where it is able to incrementally learn an identified
unknown.
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Figure 10: toothbrush and book are indoor objects introduced as part of Task 4. The detector trained till Task 3, identifies

toothbrush as an unknown objects in sub-figure (a) and eventually learn it as part of Task 4, without forgetting how to identify person
in sub-figure (b).
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Figure 11: Several items next to a laptop on top of a table are identified as unknown, after learning Task 1. Laptop, book and mouse
are introduced as part of Task 4, and hence are detected afterwords. external-storage and walkman (both are never introduced)
were identified as unknown initially, but has not been detected after learning Task 4, and is one of the failure cases of ORE.
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Figure 12: suitcase which was identified as unknown is eventually learned in Task 2, along with a false positive detection of chair.



_ car 42%
e * -
e narcnn 20°%/ person |8 !‘ iberson.t. 1Y
person 95%)erson 63%5SC1 21 /v 2rSOl' 55 /o
p

Jr—

CIbUlI._'JU/O 1 lJu/b‘"* is
s person .

SSMsuitcase 58:’_/0

(a) (b)

Figure 13: In this highly cluttered scene, the unknown instance clock is identified, but is not localised well, after learning Task 2. After
learning Task 4, ORE detects clock, along with reducing false positive detections of car and bicycle. The red suitcase is not
labelled after learning either of the tasks, and hence is a failure case.



