A. Appendix
A.1. Proofs

Proposition 3. Consider the ODE in Eq. 5 and assumptions on A described above. Suppose we have |U|| < «/2, and ¢(+)
is 1-Lipshitz function, it follows that, for any given, B, U,,, an equilibrium point exists and is unique.

To prove the proposition, we must find a solution to the non-linear equation Az + Bu,,, + $(Uz + Wu,,,) = 0 and show
that it is unique. We do this by constructing a fixed-point iterate, and show that the iteration is contractive.
To this end, define I'(z) = z + n(Az + Bu,, + ¢(Uz + Wu,,)), and note that for any two z,z’ € R”, we find,

IT(z) = T(2)]| < |(T + nA)(z — 2)|| + nl|6(Uz + Wur,)) — (Uz" + Wu,,))||
< (T +nA)(z—2)| +nU(z - 2]
< Omax(I +1A)||(z — 2') || + 1l[U(z — 2')]|
< omax(I +nA)||lz — 2’| + || Ulll|z — 2’|

— IT(@) = T(@)]| < (omax(I +7A) + 0|02 = 2|l = 7]}z — 2|)

If the constant v < 1, then the above inequality proves that I" is a contraction. The result then follows by invoking the Banach
fixed point theorem (contraction-mapping theorem). All that remains to show is that ¥ = opax (I +nA) + 7||U|| < 1. From
assumptions we have, omax(I +7A) <1 —anand |U|| < o, wherea > 0; = y<1—an+an <1.

Proposition 4. With the setup in Proposition 1, and regardless of 3, the equilibrium point is globally asymptotically stable,
and the discrete Euler recursion converges to the equilibrium solution at a linear rate.

Let z* be the equilibrium solution, i.e. Az* 4+ Bu,, + ¢(Uz* + Wu,,) = 0. We consider the Lyapunov function
V(z(t)) = ||z(t) — z*||* and show that it is monotonically decreasing along the ODE system trajectories. Observe that, as
per our setup, components where (3); = 0 does not pose a problem, because those states remain frozen, and serve as an
additional exogenous input in our ODE. Consequently, we can assume without loss of generality that (3); = 1 for all j € [D].
The gradient of the Lyapunov function along the ODE system trajectories can be written as

dv(z(1))

o = @) (2(t) —2") + (2(t) - 2) a(t)

(Az(t) + Buy, + ¢(Uz(t) + Wuy,)) ' (2(t) - 2°)
+(z(t) —2*) " (Az(t) + Buy, + ¢(Uz(t) + Wu,,))

=(A(z(t) = 2") + B(um — up) + ¢(Uz(t) + Wxp) — ¢(Uz* + Wuy,)) " (2(t) — 2°)
+ (2(t) — 2°) T (A(2(t) — 2) + B — up) + ¢(Uz(t) + Wx,,) — (Uz* + Wu,,))
—(A(z(t) — 2*) + o(Uz(t) + Wxp) — 6(Uz" + Wu,)) T (a(t) — z*)
+ (2(t) — 2°) T (A(2(t) — 2°) + 6(Uz(t) + Wxyp) — (Uz* + Wu,))

(
=(a(t) —2") " (A + AT)(z(t) — 2*) + 2(6(Uz(t) + W) — 6(Uz" + Wu,,)) " (a(t) - 2°)

We now invoke Cauchy-Schwartz inequality to bound the second term, namely,

|(6(Uz(t) + Wu,,) — ¢(Uz" + Wup,)) " (2(t) — 2°)| <[(6(Uz(t) + Wuy,) — ¢(Uz" + Wuy,))||l2(t) — 2|
< [Ullllz(t) — 2" [lll2(t) — 2"|| < [|z(t) — =*]*
where in the last inequality we used the fact that ¢(-) is 1-Lipshitz and ||U|| < o < 1. As aresult, we have,
dV(=(1))
dt

where the last inequality follows because, we have (Apax(A+AT) < —1). This shows that the ODE is globally asymptotically
stable and converges to a unique equilibrium point. To show a linear rate of convergence we note that K -fold iterations of the
Euler method (see Prop 1), z* = I'(z"~1) = z28=! + n(Az*~! + Bu,, + ¢(Uz*~! + Wu,,)), results in,

< Amax(A+ AT+ 1)z — 2" <0

12" —2*|| < 7"|2" - 2"

11

which follows directly from the fact that z% = I'(z%~1), z* = I'(z*), and T is a contraction as obtained by Eq. 7. This
establishes the linear-rate of convergence.

Proof of Theorem 1
Note that, when 8; = 0, $,,(i) = s;—1(¢). On the other hand when ; > 0, the system is in equilibrium, and for those
components, j, we have

(5(t)); = (F(2(t), un)); = 0, where F(z(t), un) = B(un) o (Az(t) + Buy, + 6(Uz(t) + W)

Now (F(Sp, um))r = 0 regardless of fj. This is because if 8x(u,,) > 0 we reach equilibrium, and z(¢) = 0, and on the
other have if 8, = 0 then (F'(s, um))r = 0 in any case. With this in mind, define D = diag[1g,(y,,)>0]- We then write the
vector S, = Ds,, + (I — D)sy,—1. Let Jp, 1 —1 denote the Jacobian of s,,, with respect to s,,—1. Taking derivatives we get,

0=VF(8m,un) =B(uy) o (A(DJm.m-1+ (I — D)) + By)
+ B(um) o (VO(U(DJrm—1 4 (I = D)) + W3))
+ DVo(Ugsp—1 + Woxp,)(Asy, + Buy, + ¢(Us,, + Wuy,))

First, note that the third term is always zero, due to the fact we noted earlier, namely, if a component is active, then the
corresponding state reaches equilibrium, and there is nothing to do if the component is otherwise inactive. Now noting that
A =Bs and U = Wy, we get,

VF(Swu um) = 5(um) © (AD)(Jm,,m—l - I) + V¢()UD(Jm,m—1 - I)
Collecting the common terms, we have,
VF(va um) = B(Um) o (A - V¢U)D(Jm7m71 - I)

Now for the case in hand, ||V¢U|| < 1, and since ||A|| > 1, the middle term is non-zero. This implies that for all the active
components, (Jy, m—1)ik = 1.

For the other case, the proof follows in an identical manner. Specifically, for the non-zero rows of B the proof is identical,
and the claims hold for those associated state components. For the rows with zero rows since,

A.2. Implementation Details

We acquired the publicly available code for the baselines except Antisymmetric RNN [10] and Incremental RNN[26]. We
write the RNN cell implemntation for Antisymmetric RNN and Incremental RNNs from the pseudo code provided in their
papers. Before running our grid search, we ensured that we were able to reproduce the publicly reported results. Following
which we run our experiments for suggested hidden states as per the previous works for each dataset.

In order to avoid non-determinism in the experiments, we initialize both the numpy and tensorflow random library with the
same seed number, 1234. Our parameter matrices are initialized with a random normal initializer with mean 0 and standard
deviation 0.1 while our time-constant biases are initialized with —3.0 and remaining biases are initialized with 0.

We provide the pseudo code in Algorithm 1 to generate the hidden states of the TARNN . In order to implement this
routine on a deep learning framework, we need to elaborate a bit more about the ODESolve function. We implement the Euler
iterations described in the practical implementations in the method section. Following the recommendation from [26] and the
fact that many of these datasets are slowly time varying, we use the K = 5 in the Euler recursions to reach the equilibrium.
Table 5 provides the number of hidden units used for different datasets.

Our experiments use hidden size as suggested by [31, 10] i.e. 128. We point out that this is not the setting used by [27, 34]
as their best results are achieved with much larger state space i.e. 512 state dimension, thus requiring much larger models.
Thus, in order to provide fair comparison we only allow state space as 128 dimensions.

In order to enable grid search on the baseline methods, we use the method specific hyper-parameter values suggested in the
respective baselines. We allow the methods to pick the non-linearity from the set { ReLU, tanh, sigmoid }. For Antisymmetric
RNN, as per their recommendation we step size from the set {0.01, 0.1, 1} and diffusion parameter v € {0.001.0.01, 0.1, 1.0}.
For nnRNN and expRNN methods, we follow the hyper-parameter search grid as suggested in [27].

We use grid search for tuning the hyper-parameters for the methods. We used the values [4.5F — 6,4.5E — 5,4.5F —
4,1F — 6,1F — 5,1F — 4] for L2 regularization. We searched over [le — 2, 1e — 3, le — 4] as the base learning rates which
are halved after each 7 = [5, 10, 20] epochs have passed. We allowed the methods to train for [30, 50, 100, 300] epochs. We

12

Table 5: Various hyper-parameters to reproduce results

Dataset Hidden Learning L2 Tnit) Epochs T Batch

Dimension (hr) Rate (hr) regularization Size

Pixel-MNIST 128 le~2 4.5¢=6 0.08 30 5 128
Permuted-MNIST 128 le=2 4.5~ 0.0008 30 5 128
Noisy-MNIST 128 le=2 4.5e7° 0.0008 30 5 512
Noisy-CIFAR 128 le—2 4.5e7° 0.001 30 5 256
Addition Task 128 le™2 1.0e7? 0.001 2 - 128
Copying Task 128 le=?2 1.0e=6 0.45 - - 128

PTB 256 - - 0.001 100 -

use ReLU as the non-linearity for all of our experiments except in Copy and PTB tasks where we use tanh as the non-linearity
(performs better than ReL.U).

We point out that we set A = —1 for all our experiments except Pixel-MNIST/Permute-MNIST tasks where we use A to
be the blocked triangular identity matrix as mentioned in the analysis Section 3.1. This allows us to couple the linear part
resulting in better performance on these tasks in comparison to the A = —I configuration.

Note that the settings used for PTB dataset corresponds to the small configuration with 300 as the sequence length. We
piggy back on the configuration changes used in [31, 26, 53] which describes the learning rate along with the learning rate
schedule and the number of epochs all the methods are trained. Thus, we do not list these hyper-parameters in the table 5.

A.3. Unitary RNNs do not solve vanishing gradients.

[34, 27] and others propose to “cheaply” design orthonormal transition matrices (OTM), appealing to [2] for justification.
[2] (Eq. 4) only shows an upper-bound with ReLU + OTM. This solves exploding gradients, but the more pernicious vanishing
gradients remains (RELU+OTM is discussed in [44] [PSG17]). In [2]’s notation with Dy, binary diagonal arising from
ReLU activations, W unitary, we would need, ||0C'/ ahT(Hz;l DW || > ||0C/dhr||. This is generally not true due to
matrix non-commutativity. E.g. for t = T' — 2, this is possible if || Dz_1W T Dr_oW || = ||[D7_1W T Dr_s|| > 1. Unless,
Dr_1 = Dp_qisidentity, Dr_1W Dp_5 is a submatrix of W, and generically has norm less than one.

A 4. Relationship to existing Recurrent architectures.

We will now briefly discuss other recurrent architectures in the literature to gain intuition into our framework. We will refer
to the ODE Eq. 5

(a) Vanilla RNNs: Setting 8 = 1, A = —I, B! = 0;B? = 0, results in the ODE, z(t) = —z(t) + ¢(Uz(t) +
Wx,,,); z(tg) = Sm—1. Euler discretization of this ODE with only one step results in Vanilla RNNs.

(b) Fast/Antisymmetric RNNs: Setting 3 = 1, A = 0, B! = 0;B? = 0, results in the ODE, z(t) = ¢(Uz(t) +
Wx,,); z(to) = sm—1. Euler discretization of this ODE with only one step results in [31, 10].

(¢) Incremental RNNs: Setting 3 = 1, A = —I, B! = 0;B? = I, results in the ODE, z(t) = —z(t) + ¢(Uz(t) +
Wx,,); z(to) = Sm—1. Since the initial state of the ODE, z(tp) = s,,—1, we can write it into z(t) = —(z(t) — S;—1) +
&(U(z(t) — sm—1) + Wx,,,) with z(to) = 0. This ODE is equivalent to [26].

A.5. Additional plots for Toy Example.

We add additional figures for the toy example in order to describe the following properties: (a) TARNN achieves faster
convergence than the baselines, (b) TARNN time constants activate at the correct locations where the markers are placed
and hence we get the hidden state transitions at these locations, and finally (c) we plot a the hidden state norms in order
to demonstrate that SkipLSTM does focus at the input markers while TARNN ends up changing the hidden states at these
locations.

A.6. Toy Example with larger state space.

In our main experiments with Toy example we have used a very small state space to demonstrate that TARNN outperforms
the baselines even with such small state space. Note that forcing training and inference on a small state dimension leads to a

13

Sequence length = 16

1.4+
1.24
1.01
>
Q
£ 081
=
@
§ 0.6
o
04] — LsTM
—— FastRNN
024 — Antisymmetric
| —— skipLSTM
004 — TARNN

0 200 400 600 800 1000 1200 1400 1600
Training Steps

(a)

Class: (t=4)=1, (t=12)=1)

2.0
—— input
1.5 A — sk
1.0 4 — 5%
0.5 \ p
v Y\
o 0.0
=3
©
> —-0.51
—1.0 A
—1.5 A
_2'0 -
-2.5 T T T T T T T T
0 2 4 6 8 10 12 14
Time Steps : m
(b)
Class: (t=4)=1, (t=12)=1)
3.0
2.5
[
=3
S 201
=
2
£ 154
)
E 1.0
o
P-4
3
E 0.5 1
0 —— Input
0.0 1 —— TARNN
—— SkipLSTM
-0.5 T T T T T T T T
0 2 4 6 8 10 12 14
Time Steps : m
©

Figure 3: Toy Example. (a) TARNN converges quickly to the 0.0 cross-entropy error. (b) shows time constant 3 along with the input, at
locations ¢ = 4, 12, both the input and time constants are in sync resulting in the state update while everywhere else the time constant
does not allow the state to update (see sy, state which captures the update or skip state part). (c) shows the norm of the hidden state for
SkipLSTM and TARNN .

14

difficult problem. This is because in our setup we have 16-length real-valued input traces. As such a large state dimension
could in principle commit the entire input trace to memory, and good performance would not be surprising (indeed as
Table 6 shows). The purpose of our example was to motivate our key intuition (a) that trainability of an RNN is limited by
vanishing/exploding gradients; and (b) Sequential data consists of uninformative/noisy data segments, which if not suppressed
can lead to performance degradation. See Caption of Fig.1 in the main text paper. For good performance we need both lossless
hidden-state gradients (for informative input segments), and skipping (uninformative inputs).

Table 6: Toy Example: Accuracy for various hidden state sizes.

Algorithm Hidden Dimension
2 4 8 16 32 64

FastRNN 45 47 52 69 82 96
Antisymmetric 37 39 41 59 73 90
LSTM 45 54 67 82 96 100
SkipLSTM 60 66 72 91 98 100
TARNN 100 100 100 100 100 100

A.7. Gradient Norm Plot for Add-Task.

TARNN works exactly as in the toy example, on other datasets as well. As evidence, we plot gradient norm for the add-task
in Figure 4, and as expected TARNN is able to better maintain gradient norms near unity. The plots for other datasets follow a

similar trend.

A.8. Google-30, HAR-2 datasets

In order to verify that our method works well for IoT tasks, we use popular datasets from previous works ([31]). These
datasets primarily focus on detecting activitiy embedded in a longer sequence. We pick two datasets namely: (a) HAR-2
[1], i.e. Human Activity Recognition from an accelerometer and gyroscope on a Samsung Galaxy S3 smartphone, and (b)
Google-30 [50], i.e. detection of utterances of 30 commands plus background noise and silence. For these tasks, light footprint
of the model also becomes extremely important given that these models are deployed on resource constrained IoT devices.

Table 7 shows accuracy, model size, training time, inference time, and the number of parameters. TARNN beats the

Sequence length = 200

101 — LSTM
a FastRNN -

— 107! —— Antisymmetric
gy —— SkipLSTM
= 107 5 —— TARNN
b
flg 107> 4
5
o 10—7 .
©
w 1079 -
(@]
(@]
o 1011 4

10—13]

0 200 400 600 800 1000 1200 1400 1600
Training Steps

Figure 4: Add Task Gradient Norm for 200 length sequences.

15

baselines in terms of test accuracy. TARNN has smaller model size, while its inference time comparable to iRNN and hence
well suited for IoT tasks.

Table 7: Results for Activity Recoginition (I0T) Datasets.

. Accuracy Model Train Test
Data set Algorithm (%) Size (KB) Time (hr) Time (ms) #Params

HAR-2 FastRNN 94.50 29 0.063 0.01 7.5k
LSTM 93.65 74 0.183 0.04 16k
Antisymmetric 93.15 29 0.087 0.01 7.5k

iRNN 96.30 18 0.018 0.03 4k
TARNN 96.59 17 0.03 0.02 3.7k

Google-30 FastRNN 91.60 96 1.30 0.01 18k
LSTM 90.31 219 2.63 0.05 41k

Antisymmetric 90.91 64 0.54 0.01 12k
iRNN 94.23 45 0.44 0.05 8.5k

TARNN 94.93 20 0.38 0.01 9k

A.9. Inference time

As the table 7 shows that the inference time for TARNN is similar to FastRNN and about at least one-half of the inference
time for the LSTMs.

A.10. Impact of larger K on the results

Our choice of K is inspired by previous ODE discretization works [26]. Small K suffices for many datasets because inputs
are slowly varying (small drift). Furthermore, our dynamical system is exponentially stable (Proposition 2), allowing for rapid
convergence to equilibrium. As shown in Table 8, larger values of K lead to increased inference time, and there is an inherent
tradeoff between seeking exact equilibria and inference time. We will elaborate this in the revision.

Table 8: PTB Language Modeling: Larger K values.

Algorithm Hiddep K Test . Train .Time Inference Time
Dimension Perplexity ~ (min) (ms)
TARNN 128 1 104.15 27 1
TARNN 128 3 10242 40 1.7
TARNN 128 5 101.21 65 32
TARNN 128 7 101.01 91 53
TARNN 128 10 100.91 123 8.1

16

