
Supplemental Materials

Shichao Kan1,2, Yigang Cen1,2,∗, Yang Li3, Vladimir Mladenovic4 and Zhihai He3,∗
1Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China

2Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing 100044, China
3Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA

4Faculty of Technical Sciences University of Kragujevac, Cacak, Serbia

16112062@bjtu.edu.cn; ygcen@bjtu.edu.cn; yltb5@mail.missouri.edu

vladimir.mladenovic@ftn.kg.ac.rs; HeZhi@missouri.edu

In this supplementary material, we provide the algorithm
summary, more experimental results, and ablation studies
for further understanding the proposed ROUL algorithm.

A. Summary of Algorithm

The proposed ROUL algorithm is summarized in Algo-
rithm 1.

B. More Ablation Studies

In this section, we further analyze the contribution of
each algorithm component of our method. We first generate
the pseudo labels using the k-means clustering algorithm
based on the ImageNet pre-trained model, then we conduct
the following experiments with iterative pseudo labels gen-
eration.

Figure 1. The impact of the clustering numbers.

(1) Impact of the clustering numbers. We evaluate
our method with different numbers of clusters on the CUB
dataset using the GoogleNet backbone. From Figure 1, we
can see that our method achieves the best performance as

* corresponding authors

Algorithm 1 Summary of Optimization Algorithm
1: Initialization: Initialize parameters of backbone en-

coder with the ImageNet pre-trained model. Initialize
the value of learning rate, epoch t, iterations k of each
epoch.

2: Input: Training images.
3: Output: Optimized network parameter Θ.
4: for iter1 in range(t) do
5: Extract features of the training images.
6: Calculate pseudo labels of the training images by
7: the K-means clustering algorithm.
8: Set the mini-batch size o as 100.
9: for iter2 in range(k) do

10: Randomly sample a mini-batch images with
11: corresponding pseudo labels from the training
12: dataset.
13: Do augmentation for each image in the
14: mini-batch.
15: Extract features of the sampled mini-batch
16: images and the augmented images by the
17: backbone encoder.
18: for i in range(o) do
19: Calculate the LROC , LMOC , LFEN and
20: LO losses.
21: end for
22: Calculate the overall loss.
23: Back propagate and update parameters.
24: end for
25: end for

the number of clusters approaches the number of ground
truth classes (i.e., 100).

(2) Impact of the embedding size. Table 1 evaluates
the impact of different embedding sizes on the CUB dataset
with the GoogleNet backbone. We can see that the perfor-
mance gradually improves with the dimension from 64 to



512, and drops a little when the embedding size is increased
to 1024.

Table 1. The retrieval performance with GoogleNet backbone for
different embedding size on the CUB dataset.

Feature Dim R@1 R@2 R@4 R@8
64 52.0 64.0 74.5 83.7
128 56.1 67.7 78.1 85.9
256 57.3 68.7 79.5 86.5
512 58.0 69.9 79.2 87.5
1024 57.2 69.0 78.6 86.5

C. Visualization of Learned Features

In order to visualize the learned feature, we use the t-
SNE visualization method to show the results of the cluster-
ing on the CUB, Cars and SOP datasets, as shown in Fig-
ures 2, 3, and 4. Although it is hard to clearly see with a
large number of classes being visualized together, from the
enlarged samples, we can see that our algorithm is able to
successfully aggregate images from the same classes in the
high-dimensional feature space.

Figure 2. T-SNE visualization of the 128-dimensional embeddings
with the GoogleNet backbone on the CUB test set.

Figure 3. T-SNE visualization of the 128-dimensional embeddings
with the GoogleNet backbone on the Cars test set.

Figure 4. T-SNE visualization of the 128-dimensional embeddings
with the GoogleNet backbone on the SOP test set.


