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1. Adversarial Attack Mechanism
The modified version of the Iterative Fast Gradient Sign

Method (I-FGSM) is used to perform the adversarial attack
on the super-resolution model [3]. The main goal of the ad-
versarial attack on the super-resolution model is to perturb
the low-resolution (LR) image so that the super-resolution
model fails to perform and creates unwanted artifacts. Fol-
lowing the paper, we use two types of attacks: Basic Attack
and Partial Attack. We adversarially perturb the whole LR
image in the Basic Attack and a small portion of the LR
image for Partial Attack.

Basic Attack: Let f(·) is the super-resolution model.
IL0

is the LR image, and IL is the adversarially perturbed
LR image. f(IL0) and f(IL) are the super-resolved images.
The main objective is to maximize the difference between
f(IL0

) and f(IL). It can be defined as:

L(IL, IL0) =‖ f(IL)− f(IL0) ‖2 (1)

IL can be iteratively updated by using the I-FGSM update
rule by:

ĨL(N + 1) = clip0,1(IL(N) + α
T sign(OL(IL(N), IL0

))) (2)

IL(N + 1) = clip−α,α(ĨL(N + 1)− IL0
) + IL0

(3)

Here, T is the number of iterations, sign(OL(IL(N), IL0))
is the sign of the gradient, clip0,1 clip the pixel values in
between 0 and 1, and α is the adversarial noise level.

Partial Attack In case of a partial attack, we restrict the
attack region and add adversarial noise in that specific re-
gion. Let M is the masked region, where the area that will
be attacked is set to 1, and the rest is 0. Therefore, the new
I-FGSM update rule is defined as,

ĨL(N + 1) = clip0,1(IL(N) + α
T sign(OL(IL(N), IL0

)) ◦M) (4)

where ◦ is the pixel-wise multiplication.

(a) PSNR vs Uncertainty (UN)

(b) UN vs Scale (c) UN vs Adv. Noise Level

Figure 1. (a) presents the relation between PSNR and Bayesian
uncertainty. (b) presents the influence of uncertainty for different
scale factor models. (c) presents impact of adversarial noise levels
with uncertainty. (zoom for the best view.)

2. Additional Experiments: Residual Network
We perform similar experiments on another deep neu-

ral architecture like VDSR, as described in the main paper.
For this purpose, we use the popular SR-ResNet architec-
ture [7], which consists of consecutive residual blocks.

2.1. Network Architecture

The residual network is one of the most popular archi-
tecture for image classification. SR-ResNet [7] uses the
consecutive residual blocks for super-resolution. We adopt
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Dataset Attack Level
Uncertainty

Scale Factor ×3/ ×4/ ×8
PSNR

Scale Factor ×3/ ×4/ ×8
No Defense After Defense No Defense After Defense

BSDS100

No Attack 0.0252/ 0.0159/ 0.0083 0.0019/ 0.0016/ 0.0018 27.57/ 26.61/ 24.56 27.88/ 27.23/ 24.56
1 0.0225/ 0.0153/ 0.0075 0.0026/ 0.0019/ 0.0021 26.04/ 25.53/ 23.80 27.60/ 26.96/ 24.37
2 0.0197/ 0.0146/ 0.0075 0.0028/ 0.0023/ 0.0024 23.78/ 24.08/ 22.66 27.45/ 26.70/ 24.28
4 0.0282/ 0.0202/ 0.0103 0.0031/ 0.0027/ 0.0029 20.27/ 21.25/ 20.50 26.88/ 26.24/ 24.07
8 0.0270/ 0.0217/ 0.0121 0.0036/ 0.0033/ 0.0035 17.25/ 18.21/ 18.03 26.14/ 25.50/ 23.66

16 0.0308/ 0.0290/ 0.0156 0.0048/ 0.0045/ 0.0045 14.97/ 15.28/ 15.50 24.77/ 24.17/ 22.85

Urban100

No Attack 0.0257/ 0.0325/ 0.0119 0.0031/ 0.0030/ 0.0034 26.21/ 24.17/ 22.02 25.95/ 25.03/ 21.94
1 0.0276/ 0.0344/ 0.0168 0.0038/ 0.0032/ 0.0038 24.66/ 23.02/ 20.94 25.54/ 24.68/ 21.63
2 0.0291/ 0.0369/ 0.0156 0.0039/ 0.0036/ 0.0042 22.67/ 21.51/ 19.82 25.34/ 24.17/ 21.45
4 0.0331/ 0.0392/ 0.0201 0.0040/ 0.0038/ 0.0047 19.71/ 19.26/ 17.98 24.93/ 23.99/ 21.23
8 0.0303/ 0.0503/ 0.0192 0.0043/ 0.0046/ 0.0051 16.73/ 16.69/ 16.00 24.41/ 23.27/ 20.93

16 0.0320/ 0.0523/ 0.0222 0.0056/ 0.0057/ 0.0061 14.31/ 14.20/ 14.02 23.24/ 22.25/ 20.37

Manga109

No Attack 0.0170/ 0.0123/ 0.0081 0.0024/ 0.0025/ 0.0030 31.26/ 28.89/ 24.02 31.50/ 29.29/ 23.78
1 0.0142/ 0.0118/ 0.0085 0.0030/ 0.0028/ 0.0032 29.44/ 27.68/ 23.39 30.59/ 28.87/ 23.59
2 0.0165/ 0.0143/ 0.0104 0.0036/ 0.0033/ 0.0034 26.85/ 25.87/ 22.41 29.36/ 27.88/ 23.26
4 0.0258/ 0.0160/ 0.0097 0.0044/ 0.0038/ 0.0039 22.94/ 22.94/ 20.80 28.15/ 26.89/ 22.84
8 0.0294/ 0.0185/ 0.0124 0.0051/ 0.0046/ 0.0046 19.09/ 19.50/ 18.47 26.77/ 25.71/ 22.24

16 0.0267/ 0.0285/ 0.0147 0.0059/ 0.0058/ 0.0057 16.11/ 16.22/ 15.95 24.88/ 23.89/ 21.31
Table 1. Quantitative evaluation of our proposed Bayesian uncertainty reduction technique based adversarial defense mechanism.

the SR-ResNet architecture with some minor modifications.
In our architecture, the residual block consists of two con-
secutive convolution layers and each followed by ReLU
and batch-normalization. There are 16 consecutive residual
blocks in the network.

2.2. Training Details

We use the DIV2K dataset [1, 10] for training, which
contains 800 training images and 100 images for validation.
Five standard benchmark testing datasets, namely Set5 [2],
Set14 [11], BSD100 [8], Urban100 [4], Manga109 [9]
are used for performance analysis. We randomly extract
patches of size 32×32 from each LR image during training
for a batch update. Each batch contains 16 patches. We
augment the patches by horizontal flip, vertical flip, and
90-degree rotation and randomly choose each augmenta-
tion with a 50% probability. Each input patch is normal-
ized into [0, 1] and [0.4488, 0.4371, 0.4040] is subtracted
channel-wise before feeding to the network. We train each
model with the PyTorch framework for 1000 epochs, where
a single epoch constitutes 1000 batch updates. Adam opti-
mizer [6] is used to update the weights. The learning rate
is initialized to 10−4 and reduced to half after every 200
iterations. We use mean-squared error to optimize model
parameters.

2.3. Behaviour of Uncertainty

Like VDSR architecture [5], as described in the main pa-
per, the Figure 1(a) shows a strong relationship between re-
constructed image quality and uncertainty in reconstruction.

BSDS100 dataset is used for this experiment, and the ex-
periment is performed for scale factor ×4. We observe that
images with lower PSNR, which represents the image qual-
ity, give higher uncertainty. Figure 1(b) shows the relation
between scale factor and uncertainty. Unlike VDSR, we do
not observe any relationship between those. In Figure 1(c),
We witness that images with more adversarial perturbation
lead to higher uncertainty and experiment is performed for
scale factor ×2.

2.4. Defense Against Adversarial Attack

The performance of our proposed adversarial defense
mechanism on the SR-ResNet model is shown in Ta-
ble 1 using the three most popular testing datasets, namely
BSDS100, Urban100, and Manga109. Like the main paper,
we use the five different adversarial attack levels, as shown
in [3], to show the efficacy of the defense mechanism. We
also show the performance of the defense mechanism on the
images which are not perturbed adversarially. The perfor-
mances are shown for three different scale factors, that is,
×3, ×4, ×8.

Like VDSR architecture in the main paper, Table 1
shows similar performance in preventing adversarial attacks
while we use SR-ResNet architecture and several datasets
like BSDS100, Manga109, and Urban100. Our proposed
defense mechanism performs well to improve the recon-
struction performance in adversarially attacked images. As
the attack level increases, the performance drops drasti-
cally. Our proposed method successfully prevents that per-
formance drop.
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