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1. Zero-shot Network Architecture and Training

The zero-shot learning framework proposed in the main paper is shown in its Figure 1. It consists of a transmission map
estimator M and an atmospheric light /global background light estimator M 4. In the main paper, their architectures are
introduced briefly in Section 3.3 and the loss functions used for the training are given Sections 3.4 and 3.5. Here, we elaborate
these in detail.

1.1. Network Architecture

The detailed architectures of My and M4 are shown in Figure 1(a). The input image is fed into the My network at
multiple scales to perform multi-scale feature selection (see Section 1.1.2) on features extracted color channel-wise (see
Section 1.1.1) to obtain the relevant features. These features are then processed by a few convolution layers to yield the
transmission map estimate. [Conv2D, a, b, c] in the figure depicts a convolution layer with ‘a’ number of output channels,
‘b’ is the kernel size and ‘c’ is the stride. The value of ‘Ch’ in Figure 1(a) is discussed in Section 1.1.3. The input image
is also fed into the M 4 network, where it is passed through a few convolution layers that use intermediate features from the
My network as multi-scale feature attention. The features thus obtained are subjected to global average pooling followed
by a fully connected layer to yield one scalar atmospheric light /global background light estimate for each color channel.
[MaxPool, 15, 7] in the figure represents a maxpool layer with a 2D kernel of size 15 x 15 and a stride of 7.

1.1.1 Channel-wise Feature Extraction

As shown in Figure 1(a), each color channel of the input image at a particular scale is processed by a convolution layer,
following which the across-channel minimum of the channel-wise extracted features are retained. This across-channel min-
pooling is motivated by our aim to reduce a degradation (like haze) that usually increases the intensities in the color channels.
The features obtained after the across-channel minpooling is then subjected to another convolution layer. The concept of
channel-wise feature extraction is inspired by the proposal in [1]. A detailed block diagram based representation of the
channel-wise feature extraction is shown in Figure 1(b). The channel-wise feature extraction is applied for each scale at
which the input image is considered for the multi-scale feature selection explained in Section 1.1.2.

1.1.2 Multi-scale Feature Selection

In our architecture, we consider multi-scale feature selection inspired by the kernel selection network of [2]. Relevant features
that drive image restoration may correspond to different scales at different image regions, which has motivated us to consider
the multi-scale operation where the network is allowed to ignore features at unimportant scales by learning small weights.
The multi-scale feature selection network used in our approach is shown in Figure 1(b).

For simplicity, let us explain the network considering two different scales. Features J’ ; and 3; , are extracted using
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the channel-wise feature extraction block explained in Section 1.1.1 from the input image I, and down-scaled input image
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Figure 1. Detailed network architecture of our zero-shot single image restoration framework

I 1, respectively. The extracted features J’,; and J ‘j 3 are combined and fed into a fully connected network, which generates

welghts corresponding to the features. Those welghts are then used to perform a weighted summation of the features at the
different scales, where bilinear interpolation is used for upscaling the features at the lower scales. We perform global average
pooling g before feeding the features into the fully connected layer. In the figure, F' is the number of vector elements which
equals the number of spatial features before the average pooling, and h is the number of hidden layers in the fully connected
network. The feature J; obtained is used to estimate the transmission map, and also used as an attention map for atmospheric
/global background light estimation.

1.1.3 Transmission Map for Image Dehazing and Underwater Image Restoration

As discussed in the main paper, our zero-shot image restoration network is targeted for image dehazing and underwater image
restoration. In this context, the value of ‘Ch’ in Figure 1(a) is 1 for image dehazing and 3 for underwater image restora-
tion. This allows the Mp network to estimate a single pixel-wise transmission map for image dehazing and a three-channel
pixel-wise transmission map for underwater image restoration, which is in line with the characteristics of the corresponding
degradations as discussed in Section 3.1 of the main paper. The estimates of the atmospheric light for image dehazing and
the global background light for underwater image restoration are obtained using the exactly same M 4 network topology.

1.2. Loss function weights

As mentioned in Section 3.4 of the main paper, there are six losses in our proposed zero-shot network. The losses
are the transmission relation loss L7, the light similarity loss £rg, the pure white saturation penalty Lgpyy, the pure



black saturation penalty £spp, the Gray-world assumption Loss Layy, and the total variation loss L7y . As mentioned in
Section 3.5, a weighted sum of these losses are used for the training. The overall loss is defined as

L=Lrr+Lrs+0.001Lspw + 0.001Lspp + 1000Lcw + 0.001 L7y (D)

The weights are assigned to bring the losses to the same range so that the training takes place in a balanced manner with
respect to the individual losses.

2. Adaptation for Low-light Enhancement
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Figure 2. Network architecture for zero-shot low-light image enhancement

In Section 6.3 of the main paper, we have shown the applicability of our zero-shot framework to low-light image enhance-
ment mentioning a few modifications required for the adaptation. We elaborate those modifications here.

2.1. Modification in the network architecture

Figure 2 shows the zero-shot architecture for low-light image enhancement. Comparing the architecture in this figure to
that in Figure 1(a), we see there are a few significant changes. The across-scale maximum of the channel-wise extracted
features are retained instead of the minimum, as the degradation is due to low-light which decreases the intensities in the
color channels and our aim is to increase the illumination.

As discussed in Section 6.3, both the transmission and atmospheric light estimates for low-light image enhancement have
been found to be pixel-wise achromatic maps in literature. Hence, the M7 network architecture is modified to estimate a
single-channel pixel-wise transmission map replacing ‘Ch’ with 1, and a completely different M 4 network architecture is
used to estimate a single-channel pixel-wise atmospheric light map. This new network does not have the max pooling, the
global average pooling and the fully connected blocks. It is a hierarchical set of convolution layers, where the intermediate
features from Mt network is used as multi-scale feature attention.



2.2. Loss function weights

As explained in Section 6.3 of the main paper, leaving the Gray-world assumption loss out, we use the remaining five
losses in our proposed zero-shot network for low-light image enhancement. Those losses are the transmission relation loss
Lrr, the light similarity loss £, the pure white saturation penalty Lgpy, the pure black saturation penalty Lspp, and
the total variation loss L7y . The weighted sum of these losses used for training the zero-shot low-light image enhancement
network is

L=Lrr+ Lrs+0.01Lspw +0.01Lspp + 0.001 L7y 2)

Further, in the case of pure white and pure black saturation penalties, it is found that the ranges of these penalties originating
from the red (L) and green (£9) channels are higher compared to that from the blue channel (£Z). Hence, for balanced
training, these penalties are obtained as follows

Lspw = LR spw + L spw + 10L5 spw 3

Lspp =LRspp +Lpp + 10LP spp 4

instead of a simple summation, yielding better enhancement results.

2.3. Ablation Study: L; loss vs L; loss in L1 for Zero-shot Low-light Enhancement

Loss | PSNRindB | SSIM | CIEDE2000
Lo 14.91 0.627 55.50
Ly 17.50 0.695 46.88

Table 1. Ablation study related to L7 r loss computation for low-light image enhancement

For reasons explained in Section 6.3, in the case of low-light image enhancement, we consider L loss instead of Lo loss
used in the computation of the transmission relation loss L1 . Here, in Table 1, we compare the enhancement performance
obtained using the two losses in L. As evident, the use of L; loss clearly turns out to be superior. The image dataset used
for the above study is the LOL dataset of [3].

2.4. Effect of Perturbation Factor

Figure 3 shows the sensitivity of perturbation factor . We vary « from 0.1 to 0.9 and observe average PSNR values on
LOL dataset. It is observed that output performance is not sensitive to the selection of a. The standard deviation between
PSNR values for different selection of « is 0.48dB.
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Figure 3. Sensitivity of perturbation factor «



2.5. Additional Results on Lowlight Images

Figure 4 shows more results on lowlight images. All the results are from DarkFace dataset [3].

(a) Lowlight Image (b) Enhanced Image

Figure 4. Additional results of our method on lowlight images



3. Running Time Analysis

We perform running time analysis on an NVIDIA 2080Ti GPU. Testing and training time for an image of size 256 x 256
are 4.41 milliseconds and 6.5 minutes respectively and for an image of size 512 x 512 are 4.45 milliseconds and 10.7 minutes
respectively. We train the model for 10, 000 iterations and use the dehazing model to calculate training time.
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