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1. Real-time rendering analysis

In Section 4.3 of the paper, we compared performance
of our real-time renderer to the neural renderer. Here, we
complement this comparison by demonstrating that the ren-
dering quality is a joint product of both the shape repre-
sentation in S and the emissivity function E. To that goal,
we use our new head image dataset and evaluate how well
a novel view can be interpolated and/or extrapolated with
different choices of geometry and textures.

Setup We compare our real-time rasterized renderer
(RAS) using geometries reconstructed by the surface based
methods of Colmap [10], IDR [12] and our Neural Lu-
migraph Rendering (NLR). Additionally, we consider both
the neural textures generated by the respective method (not
available for Colmap) as well as alternative usage of the
original training camera images.

We provide the renderer with textures corresponding to 5
of the 6 high-resolution central Back-Bone H7PRO cameras
in our dataset (see Section 5), and we measure the PSNR of
the held-out interpolated/extrapolated 6th view. The same
ground-truth masks are applied for all measurements. We
average results from all 6 possible test view choices.

Results Table 1 presents PSNR scores for each scene as
well as the overall average. A qualitative comparison is pre-
sented in Fig 3. For all choices of textures, we observe a fa-
vorable performance of the shape exported from our method
compared to shapes exported by both the IDR and Colmap.
Colmap generates very accurate but incomplete geometries
resulting in holes in the rendered images (note the hair in the
scene “L1”). The geometry extracted from IDR provides
similar degree of view consistency as our own geometry
when combined with the original captured textures, even
though our method still maintains a small margin (see the
column “Captured textures” in Tab. 1). However, the neural
textures generated by IDR lack detail present in our neural
textures which results in comparatively lower PSNR scores
(see the column “Neural 1×”).

Neural textures
Scene Method

Captured
textures 1× 2× 3×

Colmap 23.96 N/A N/A N/A
IDR 22.23 22.49 23.31 23.61A1
LR 23.65 23.83 26.93 30.33
Colmap 11.48 N/A N/A N/A
IDR 19.80 19.65 20.80 21.15A8
LR 22.90 23.06 26.00 29.20
Colmap 5.45 N/A N/A N/A
IDR 18.55 18.49 18.89 18.99L1
LR 21.24 21.61 24.13 26.56
Colmap 20.03 N/A N/A N/A
IDR 23.56 23.66 25.24 25.95L3
LR 24.32 24.85 28.76 32.10
Colmap 13.36 N/A N/A N/A
IDR 17.98 17.73 18.36 18.59L4
LR 19.57 19.80 22.20 24.25
Colmap 18.40 N/A N/A N/A
IDR 22.07 21.84 22.60 22.96M2
LR 23.94 24.34 26.96 29.76
Colmap 24.22 N/A N/A N/A
IDR 16.06 13.85 14.78 15.59P4
LR 24.16 24.27 27.41 30.04

Colmap 16.70 N/A N/A N/A
IDR 20.04 19.67 20.57 20.98Average
LR 22.83 23.11 26.06 28.89

Table 1: PSNR scores for the interpolated/extrapolated
views achieved by different variants of our real-time ren-
derer. Neural textures for the original camera poses (1×),
and their supersampled variants (2×, 3×) are compared to
a direct use of the original images captured by our camera
array.

Texture space upsampling An important argument for
using the neural textures rather than the original captured
images is the possibility to use the neural renderer to pro-
duce additional virtual views. This allows to generate much
denser virtual camera spacing, i.e. through view synthesis,
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Figure 1: The positions of the original texturing cameras
(red) and the interpolation pattern to generate novel textures
labeled as “2×” (green) and “3×” (blue).

than would be practical with physical camera setups. To
demonstrate this unique capability we resampling the tex-
ture space by subdividing the original 3 × 2 camera layout
in our dataset as shown in Figure 1. This yields first the
original 6 textures (labeled “1×”), then additional 9 tex-
tures (total of 15; labeled “2×”) and finally additional 30
textures (total of 45; labeled “3×”). We follow the same
procedure and remove the texture corresponding to the orig-
inal ground-truth camera pose for the test.

The results are again presented in Table 1 (two right-
most columns) and in Fig 3. Both IDR and SineSDF ex-
perience significant quality boost as the texturing angular
space gets denser and the interpolation distances between
blended textures get smaller. However, only our technique
can leverage the high spatial detail featured in our neural
textures and, as a result, shows significantly larger PSNR
overall. Please explore the video supplement to evaluate
dynamic properties of this behavior.

2. Additional Results
In this section, we provide additional results that did not

fit into the main paper. Table 2 complements Table 2 in the
main paper and shows results of the image reconstruction
metrics computed for the three test views held-out from the
training on the DTU dataset [3]. Table 3 extends Table 3
in the main paper and shows additional image metric scores
for results using variety of mutli-view datasets.

3. Supplemental Video
We provide a detailed video supplement to fully evalu-

ate view consistency of our novel rendered views and com-
pare to the baseline methods. A summary video with side
by side comparison and comments is available in the root
folder as 4945 supplemental video.mp4 (x264 en-
coding in mp4 container). Additionally, individual results in
form of short videos are provided separately in three fold-
ers, each showing a different type of comparison.

Neural renderings Videos in the folder
neural videos present neural renderings of scenes

from the datasets used in our paper produced by our
method as well as well Colmap, IDR, Neural Volumes
and NeRF. Note, that the renderings are provided without
post-processing and show the background reconstruction
present in Neural Volumes and NeRF. This background was
not evaluated in metrics in our paper; all tested methods
use the same foreground mask when evaluating the PSNR.

Shape renderings In the folder shape videos, we use
a simple OpenGL renderer using the PyRender Python
package to visualize meshes extracted from Colmap, IDR
and our Neural Lumigraph that are later used for the real-
time rendering. Note that IDR contains lot of boundary
geometry noise for views that were not supervised during
training.

Real-time renderings Finally, in the folder cg videos,
we present outputs of our real-time renderer as well as dif-
ferent variants presented in the study in Sup. Sec. 1.

4. Input sensitivity

0.21

21.1

0.31

26.3
IDR Ours Ground-truth

Figure 2: A comparison of image and shape reconstruction
by IDR and our method with the ground-truth Unity render-
ing and mesh shown on the right. The upper numbers de-
note the image PSNR averaged over all views and the lower
numbers correspond to the Chamfer distance.

Some of the key input properties that affects quality of
multi-view reconstruction is the accuracy of camera calibra-
tion. We investigate how our method performs if this factor
is taken out of the equation by measuring its performance
on a computer-generated 3D scene. We have used Unity to
render a 5× 5 grid of views of a 3D head model with sur-
face specular properties at a resolution of 2160× 2160 pixel
and we extracted the ground-truth camera poses as well as
the object masks.
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Scan
Colmap [10] IDR [12] NeRF [7] NLR-ST NLR-RAS

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

65 15.12 0.845 0.156 21.89 0.939 0.105 27.08 0.948 0.069 26.58 0.941 0.083 25.60 0.940 0.087
97 11.37 0.835 0.166 22.77 0.914 0.128 24.17 0.918 0.109 26.43 0.922 0.108 26.40 0.922 0.108
106 16.69 0.875 0.153 20.49 0.891 0.205 30.17 0.934 0.107 29.60 0.939 0.098 28.52 0.938 0.104
118 21.72 0.912 0.100 23.24 0.937 0.150 31.03 0.955 0.083 30.77 0.950 0.091 30.39 0.950 0.093

Table 2: Image error metrics PNSR, SSIM [11] and LPIPS [13] computed for the 3 held-out test views of the DTU dataset
[3] complementing the respective training errors in Table 2 of the main paper. Best scores in bold, second best underlined.

Dataset
Colmap IDR NV NeRF NLR-ST NLR-RAS

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Volucap (1) 19.57 0.975 0.037 22.27 0.978 0.043 29.32 0.975 0.034 32.71 0.982 0.026 28.59 0.981 0.022 28.57 0.981 0.022
Digit. Ira (1) Fail. 23.89 0.835 0.286 26.54 0.829 0.287 31.18 0.845 0.267 31.63 0.851 0.255 31.13 0.851 0.260
Ours (7) 17.58 0.841 0.187 22.34 0.878 0.202 25.05 0.857 0.186 28.45 0.898 0.171 30.45 0.921 0.147 30.25 0.921 0.151

Table 3: Average image reconstruction error metrics PNSR, SSIM [11] and LPIPS [13] computed across datasets (number of
scenes in parentheses). (*) Only 5 scenes tested.

As Fig. 2 shows, both methods achieve a clean shape
reconstructions without artifacts. The hair region is repre-
sented by a cloud of semi-transparent billboards in the orig-
inal 3D model, so this would be challenging to be accu-
rately reconstructed by any approach. While the Chamfer
distance metric favors the results of IDR, we see that our
image quality is much higher as it features notably higher
spatial fidelity. We conclude that our method can avoid ge-
ometry artifacts if consistent camera and image labeling can
be obtained.

5. Datasets
Our Captured Dataset Each capture consists of 22 im-
ages and corresponding foreground masks. Six images are
captured with high-resolution narrow field-of-view (FOV)
cameras, while the remaining 16 images are captured with
low-resolution wide FOV cameras. While these additional
16 images provide useful geometrical information, they do
not carry high quality visual detail. This is why we use
all views for training each of the evaluated methods but we
only evaluate reconstruction quality for the 6 central high-
resolution cameras.

Figure 4 shows scenes in our dataset. These data are
available on the project website.1

DTU We use the multiview images and camera cal-
ibrations provided by [3] along with object masks by
Niemeyer et al. [9] and Yariv et al. [12]. Each scan con-
sists of 49 or 64 images with 1600× 1200 pixels and cov-

1http://www.computationalimaging.org/publicati
ons/nlr/

ering approximately 90× 90 degree view zone of the ob-
ject. Ground truth 3D shapes in form of point captured us-
ing structured light stereo are used to compute the Chamfer
distance.

Volucap We evaluate a full body reconstruction using a
sample frame from a video sequence provided by the volu-
metric production studio Volucap GmbH [2]. The cameras
are distributed in pairs around an upper hemisphere of the
capture dome with a subject standing in the center. The
images are cropped and rescaled to 2028× 1196 px. The
masks are manually annotated on top of automatic back-
ground subtraction.

Digital Ira The Digital Ira dataset [1] contains 7 very
high resolution (3456× 5184 px) closeups of a man’s face
in a studio setting. We used the provided camera calibra-
tion data and we manually annotated objects masks for each
view.

6. Baselines

Colmap We follow the same procedure and settings for
Colmap [10] as Yariv et al. [12] to reconstruct a 3D point
cloud from the multi-view images, build a surface mesh us-
ing Poisson reconstruction (with trim = 7) and render the
images using PyRender. For the DTU dataset, we also ap-
ply object masks to remove background points before the
surface reconstruction. Note that this method failed to pro-
duce a surface mesh of the Digital Ira [1] with all variations
of parameters that we tried.
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NeRF We use the original code shared by the authors [8].
We modify the code to support general camera models. We
execute the code using the provided high-quality configura-
tion used for their paper results but we reduce the number
of random samples to 1024 to fit to our GPU memory (11
GB on Nvidia Geforce RTX 2080Ti). Further, to support
variable sensor sizes in our dataset, we upsample all images
to the shape of the high-resolution cameras which retains
the detailed information.

For our dataset, we are forced by the memory require-
ments to reduce the training resolution by factor of 2 from
3000× 4000 pixels to 1500× 2000 pixels. However, it is
unlikely that this reduction affected the results since our ex-
periment with even more aggressive four-fold downsizing
(to 750× 1000 pixels) yielded a PSNR of 28.62 dB which
is comparable to 28.58 dB of the two-fold downsizing we
ended up using.

IDR We use the original code and configuration shared
by the authors [12]. Note, that while IDR supports train-
ing without accurate camera calibrations, we train with the
same calibrations used for all other methods and keep the
poses fixed during the process.

Neural Volumes We use the original code shared by the
authors [6]. We train our models for at least 150K iterations.
As recommended by the authors, we use three views from
different angles to condition the autoencoder. The authors
provide the ability to either pass the background explicitly
or to let the network estimate the background. Since we
don’t have a background image for all datasets, we choose
to let the network estimate the background. Due to the long
training times, we evaluate the method on a limited sub-
set of our dataset. We crop the lower resolution landscape
images to the same aspect ratio as the six high-resolution
central cameras in portrait mode. Due to GPU memory lim-
itations, we are only able to train with the image resolution
reduced to 1/4 of the original size of the high-resolution
images. Note that Neural Volumes uses an explicit voxel
representation and is therefore, unlike implicit models, not
resolution independent.

7. Metrics

PSNR For all methods we compute the PSNR between
the reconstructed images and the ground truth only for pix-
els in the object masks. The same procedure is used by
Yariv et al. [12] and we verify it by reproducing their met-
ric scores with their pre-trained models. Therefore, even
methods that do not use masks to recover the shape (NeRF,
Neural Volumes) are only rated based on prediction of the
foreground object.

Chamfer distance The Chamfer distance is computed in
a similar manner as in the original Matlab scripts provided
with the DTU dataset [3]. The shortest distance between
each ground-truth 3D point and the reconstructed shape is
computed in one direction by the Open3D [14] library for
Python. This prevents penalizing reconstruction of back-
ground (NeRF) or reconstruction of occluded object parts.
We leave out Neural Volumes from evaluating the metric
since surface extraction was not demonstrated in the origi-
nal manuscript [6] and the explicit nature of the representa-
tion makes recovery of fine details difficult.

8. Sphere tracing implementation details
Convergence of the main paper Eq. 5 towards the zero-

level set S0 is not guaranteed for general shape configura-
tion. As the SDF function S indicated distance towards the
nearest surface, it underestimates the optimal step length
if the nearest surface is not orthogonal to the current ray.
This can partially be improved by dividing the step length
by the dot product −rd · ∇xS(xi). However, computing
the gradients in every step is costly and quickly diminishes
the returns. Furthermore, if a ray closely misses a surface
edge with a surface normal orthogonal to the ray direction,
such adjustment does not improve the convergence as the
step length will stay very small.

To mitigate these issues, we use bidirectional sphere
tracing as described by Yariv et al. [12]. This approach does
not rely on the sphere tracer’s convergence as it uses it to
only narrow a possible range of surface positions which is
then further refined by additional solvers.

To this goal, we solve Eq. 5 to get the near zero-level set
xn
n in a forward direction for n = 16. We mask rays with
|S(xn)| < 5e−5 as converged. These rays are not further
optimized and x̂n = xn

n is the final output of the sphere
tracer. Next, for the remaining rays, we solve a modified
equation in an opposite direction to find a far zero-level set
xf
n as

xf
0 = ro + tfrd, xf

i+1 = x′i − S(xf
i )rd. (1)

where tf is the rear intersection of rd with a unit sphere. xn
n

and xf
n define the nearest and the furthers possible location

of the first surface point xn. In cases where xf
n is closer than

xn
n, we conclude that no surface exists. In the remaining

cases we evaluate 100 samples with the candidate range and
look for the first zero crossing of the S. Finally, assuming
a locally monotonic S we further refine the zero-crossing
location by 8 steps of sectioning [12] to get the zero-level
set x̂n.

Note that for performance, stability and memory effi-
ciency, this procedure is not differentiated [12, 4, 5]. There-
fore, one extra step of the forward sphere tracing is executed
with gradient tracking enabled to achieve a differentiable
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sphere tracing. We apply the gradient direction adjustment
[12] for this last step to get the final zero-level set as

xn = x̂n −
S(x̂n)

∇xS(x̂n) · rd
rd, (2)

for points where |S(xn)| < 0.005. A division by zero is
avoided by clamping the denominator to |∇xS(x̂n) · rd| >
0.01.
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(a) A1 (b) A8

(c) L1 (d) L3

(e) L4 (f) M2

(g) P4

Figure 4: The seven scenes forming our dataset. Image positions approximate the camera layout. The central 6 images are
high-resolution head close-ups.
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