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A. Evaluation Metrics
For completeness, and making the paper self-contained,

we review the standard panoptic segmentation metrics used
for our experiments in this section.

We evaluate our method using the standard metric panop-
tic quality (PQ) [24] as well as its variations, PQ† [43] and
parsing covering (PC) [53]. PQ formulates the quality of
the predicted panoptic segmentation in terms of intersection
over union (IoU), true positives (TP), false positives (FP)
and false negatives (FN).
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where (p, q) is the tuple of the predicted and ground-truth
mask, respectively. Additionally, thing- and stuff-specific
PQ are denoted as PQth and PQst. While popular in the
literature, the PQ metric has two downsides that has been
pointed out in previous work [43, 53].

First, the PQ metric is harsh towards stuff classes and
requires IoU overlap larger than 0.5 even for stuff, treating
it like an instance. The PQ† metric [43] aims to mitigate
this by relaxing the IoU threshold to 0 for stuff classes, and
calculates the PQ metric as usual for thing classes. Second,
the PQ metric treats objects the same regardless of size,
making it very sensitive to small false positives.

The parsing covering (PC) [53] metric targets applications
where larger objects are more important, such as autonomous
driving, and is defined as
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where Rc, R�
c are the ground-truth and predicted regions of

class c, respectively.

B. Additional Metrics Experimental Results
In this section, we describe the experimental results on

Cityscapes with the alternative panoptic segmentation met-
rics PQ† [43] and parsing covering (PC) [53], as well as the

related tasks semantic segmentation and instance segmenta-
tion metrics mIoU and AP . We include PQth to facilitate
comparison with AP .

The results for PQ† and PC can be seen in Tables A
and B. We can see that our proposed method is able to get
competitive results in terms of PQ† and PC, even when
comparing with proposal-based methods. Particularly, we
note that our method outperforms the method of Porzi et
al. [43] in terms of the PQ† metric, indicating that our model
is handling stuff classes well, which is also illustrated by our
model outperforming all others in terms of the PQst stuff
metric. Our method being competitive in terms of the PC
metric indicates that large objects are segmented well.

In Table C, we report the sub-task metrics mIoU and AP
for reference. We noticed that although our method achieves
similar PQth with the others, the gap in AP is relatively
apparent. The difference between PQ and AP in evaluating
instance segmentation performance lies in how the accep-
tance threshold for objectness score (or detection confidence)
is handled. Unlike PQ, which uses a fixed threshold, the AP
metric relies heavily on the score estimation of each instance
mask to be able to estimate the optimal threshold during
evaluation. Notably, PQ is a quite different metric from AP ,
where false positives matter a lot. Consider the definition of
the AP metric:
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where P (r) is the precision at recall r and R is the set of
recall levels. The AP evaluation protocol uses all possible
thresholds that provide the requested recall levels in order
to evaluate the model, while PQ evaluation requires finding
a single threshold (e.g. r = r0) that works for all images
in the dataset. Arguably, it can be said that PQ evaluation
is closer to representing the performance of the model in a
real production environment, where a single fixed threshold
must be set for inference. It would be an interesting future
direction to explore how we can improve AP at the same
time under our algorithm paradigm.



Method Backbone Pretrain. PQ†

Proposal-based
Seamless [43] ResNet50 ImageNet 59.6
Proposal-free
HLE (Ours) ResNet50 ImageNet 61.3

Table A. Single-scale experimental results on the Cityscapes vali-
dation set.

Method Backbone Pretrain. PC
Proposal-free
DeeperLab [53] Xception71 ImageNet 75.6
DeeperLab [53] Wider MNV2 ImageNet 74.0
DeeperLab [53] L. W. MNV2 ImageNet 67.9
HLE (Ours) ResNet50 ImageNet 76.6

Table B. Single-scale experimental results on the Cityscapes valida-
tion set.

Method Backbone Pretrain. mIoU AP PQth

Proposal-based
Seamless [43] ResNet50 ImageNet 77.5 33.6 56.1
Real-time PS [20] ResNet50 ImageNet 77.0 29.8 52.1
UPSNet [52] ResNet50 ImageNet 75.2 33.3 54.6
Pan. FPN [23] ResNet50 ImageNet 75.0 32.0 51.6
Attn.-Guid. [29] ResNet50 ImageNet 73.6 33.6 52.7
Li et al. [28] ResNet101 ImageNet 71.6 24.3 39.6
PANet [32] ResNet50 ImageNet - 36.5 -
Proposal-free
SSAP [15] ResNet50 ImageNet - 32.8 -
HLE (Ours) ResNet50 ImageNet 77.3 23.9 51.1

Table C. Single-scale experimental results on the Cityscapes valida-
tion set.
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Figure A. Postprocessing time (solid line) vs. PQ (dashed line) as
a function of the downsampling factor used in the postprocessing.

C. Alternative Postprocessing Algorithm with
Downsampling

In this section, we discuss an alternative postprocessing
algorithm which increases speed at small cost of PQ. It
is possible to speed up the postprocessing of our method
by operating on a downsampled version of the embedding
space. The resulting postprocessing time and how it affects
Cityscapes validation set PQ can be seen in Figure A. The
downsampling factor refers to how much smaller the spatial
size of the embedding space we operate postprocessing on
becomes. For example, a 1024×2048 size embedding space
with downsampling factor 4 becomes 256× 512, reducing
postprocessing time to 8 ms, while only reducing Cityscapes
validation set PQ to 58.4. This simple modification of the
postprocessing algorithm can increase inference speed at
slight cost of accuracy. Therefore, it can be decided whether
to weigh accuracy or speed higher, or have a mixture of both,
with this simple modification.


