
A. Proofs
A.1. Proof of Lemma 1

Lemma 1 (Dead Neurons) Considering ai as the input at
layer i to the following layers of the network defined by
function Φ>iθ (.) : RNi → R, the Shapley value of a neu-
ron aij defined by

∑
C⊆{aij}

Ni
j=1\aij

|C|!(Ni−|C|−1)!
Ni

(Φ>iθ (C∪
aij)− Φ>iθ (C)) is zero if the neuron is dead (aij = 0).

For any layer i, the Shapley value (with baseline zero) of
a neuron aij is defined as:∑
C⊆{aij}

Ni
j=1\aij

|C|!(Ni − |C| − 1)!

Ni
(Φ>iθ (C∪aij)−Φ>iθ (C)) ,

(8)
where Φ>iθ denotes the neural function after layer i. The

input to Φ>iθ is the activation vector ai. We need to show
that for all aij and all possible coalitions C ⊆ {aij}

Ni
j=1 \aij :

Φθ(C ∪ aij ;x) = Φθ(C;x) . (9)

We know for any ai the outputs of neurons in the next
layer are:

zi+1 = θi+1ai + bi+1 . (10)

As the baseline is considered zero, ablating a neuron aij
is done by aij = 0. Thus zi+1 does not change by ablation
of aij for any coalitionC. As zi+1 does not change, Φθ does
not change, thus we get Φθ(C ∪ aij ;x) = Φθ(C;x).

A.2. Proof of Proposition 4

Proposition 4 In a ReLU rectified neural network with
Φθ(x) : RD → R, for a path defined by [eij ]

N , if aij >
0 ∀ eij = 1, then there exists a linear region ε̂x,2 > 0 for
Φ̂θ(x; e) at x.

The linear region, ε̂x,2 is the largest `2-ball around x
where the AP is fixed, i.e.

ε̂x,2
.
= max
ε≥0:Bε,2(x)⊆S(x)

ε (11)

ε̂x,2 is the minimum `2 distance between x and the corre-
sponding hyperplanes of all neurons zij [28]. In Section 4.1
we discuss that the distance is goverened by neurons for
which ∇xz

i
j 6= 0. We have [28] ε̂x,2 = min

i,j
|zij |/||∇xz

i
j ||2.

Thus, the existence of a linear region ε̂x,2 depends on |zij |
not being equal to zero. We are selecting a path [eij ]

N where
for each neuron aij > 0 and thus we have zij > 0. If we re-
place every neuron not on the path with a constant value
equivalent to the original value of the activation of that neu-
ron, the activation pattern AP remains constant, and thus
we get a new approximate neural network Φ̂θ(x; e) at x,
where all neurons zij > 0. Therefore ε̂x,2 6= 0 and there
exists a linear region.

A.3. Proof of Proposition 5

Proposition 5 Using NeuronIntGrad and NeuronMCT, if
cκ > 0, then Φ̂θ(x; e) at x is locally linear.

For NeuronMCT and NeuronIntGrad the contributions
are assigned by:

cij = |Φθ(x)− Φθ(x;aij ← 0)| = |aij∇aij
Φθ(x)| (12)

and

cij = aij

∫ 1

α=0

∂Φθ(αa
i
j ;x)

∂aij
dα (13)

respectively. It is evident that if cij 6= 0 then aij 6= 0. There-
fore a path selected by |cij | > 0 we have all aij > 0. Hence
according to Prop. 4 the selected paths and the approximate
Φ̂θ(x; e) is locally linear.

A.4. Proofs for axioms of marginal contribution

Defining marginal contribution of neuron aij at layer i as:

cij = Φ>iθ ({aij}
Ni
j=1)− Φ>iθ ({aij}

Ni
j=1 \ a

i
j) (14)

A.4.1 Null player

The null player axiom asserts that if a neuron is a null
player, i.e.

Φ>iθ (S ∪ aij) = Φ>iθ (S) , (15)

for all S ⊆ {aij}
Ni
j=1 \ aij , then cij must be zero.

Eq. 15 is assumed for all S, therefore by substituting
S = {aij}

Ni
j=1 \ aij , in Eq. 15 we get:

Φ>iθ ({aij}
Ni
j=1) = Φ>iθ ({aij}

Ni
j=1 \ a

i
j) , (16)

which results in cij = 0.

A.4.2 Symmetry

The symmetry axiom asserts for all S ⊆ {aij}
Ni
j=1\{aij ,aik}

if

Φ>iθ (S ∪ aij) = Φ>iθ (S ∪ aik) (17)

holds, then cik = cij .
Eq. 17 is assumed for all S, therefore by substituting

S = {aij}
Ni
j=1 \ {aij ,aik}, in Eq. 15 we have:

Φ>iθ ({aij}
Ni
j=1 \ a

i
j) = Φ>iθ ({aij}

Ni
j=1 \ a

i
k) . (18)

By substituting into Eq. 14, we obtain cik = cij .



B. Further Discussions
B.1. Computing contribution of neurons vs. pixels

If we compute the marginal contribution or Shapley
value for a single feature of the input, e.g. a pixel, the dis-
tributional interdependencies, and correlations between the
pixels are not considered. This is not to be confused with the
interdependency that the Shapley value considers by taking
different coalitions into account. For instance, ablating a
single pixel from an object in an image does not affect the
score of an Oracle classifier, in any coalition. One must
consider that all the pixels are related and exist in one ob-
ject when computing the marginal contribution and Shap-
ley value for the object (all pixels considered as one fea-
ture). Shapley value of a set of features is known as gener-
alized Shapley value [32]. We can observe a consequence
of this phenomenon, in the different results obtained by
[2] when removing single pixels (occlusion-1) or removing
patches, where the latter results in more semantic attribution
maps. Several works implicitly consider such correlations
by masking a group of pixels. The question is what mask
should we look for, as the prior information about the de-
pendency of pixels is not available. There are 2N possible
masks that one can select. Moreover, a larger mask contain-
ing a feature might get the same or higher contribution score
as the mask of the feature. Therefore in [11, 10] priors such
as the size of the mask are used. These methods look for the
smallest masks with the highest contribution. In the regime
of neural networks, we encounter more problems with mask
selection. If we do not enforce any prior, we can get adver-
sarial masks [11, 15]. Therefore, several works[11, 10] en-
force priors such as smoothness of the masks. On the other
hand, if we use the prior encoded in the network (which is
learned from the distribution of the data), we implicitly con-
sider the group of pixels that are correlated with each other.
Thus by computing the contribution of individual neurons,
we are considering a complex group of pixels and their dis-
tributional relationships.

C. Implementation details
The sparsity level of ResNet-50 is 70% and VGG-16 is

90% in the experiments, unless stated otherwise.

C.1. Network parameter randomization sanity
check [1]

All attribution methods are run on ResNet50 (PyTorch
pretrained) and on 1k ImageNet images. The acquired at-
tribution maps from all methods are normalized to [-1 1]
as stated by [1]. The layers are randomized from a normal
distribution with mean=0 and variance=0.01 in a cascading
manner from the last to the first. After the randomization
of each layer, the similarity metrics (SSIM and Spearman
Rank Correlation) are calculated between the map from the

new randomized model and the original pretrained network.
Methods that are not sensitive to network parameters (like
GBP) would hence lead to high levels of similarity between
maps from normalized networks and the original map.

C.2. Input degradation - LeRF [49]

We report results on CIFAR using a custom ResNet8
(three residual blocks), Birdsnap using ResNet-50, and Im-
ageNet (validation set) using ResNet-50. We show the ab-
solute fractional change of the output as we remove the least
important pixels. Lower curves mean higher specificity of
the methods. Note that, for NeuronMCT and NeuronInt-
Grad, the pixel perturbation process is performed on the
original model not on the critical paths selected by these
methods. The critical paths are only used to obtain the attri-
bution maps and not after.

C.3. Remove and Retrain (ROAR) [21]

We perform the experiments with top 30; 50; 70; 90 of
pixels perturbed. The model is retrained for each attribu-
tion method (8 methods) on each percentile (5 percentiles)
3 times. Due to the large number of retraining sessions re-
quired, we cannot report this benchmark on other datasets.
We evaluate this benchmark on CIFAR-10 (60k images,
32x32) with a ResNet-8 (three residual blocks).



D. Supplementary results

Figure 8. Dead Neuron Selection of Pruning Objective (Spar-
sity %80). The percentage of originally dead neurons in the se-
lected paths of different methods reported for sparsity of 80%. All
paths selected by pruning objective contain originally dead (now
active) neurons

Figure 9. Dead Neuron Selection of Pruning Objective (Spar-
sity %99). The percentage of originally dead neurons in the se-
lected paths of different methods reported for sparsity of 99%. All
paths selected by pruning objective contain originally dead (now
active) neurons



Table 1. ROAR: AUCs reported for each attribution method. The lower the AUC the better.
Gradient GBP GradCAM InputMCT InputIntGrad NeuronMCT NeuronIntGrad NeuronIntGrad*

Cifar-10 0.728 0.702 0.584 0.723 0.741 0.580 0.574 0.524
Birdsnap 0.269 0.243 0.096 0.242 0.242 0.117 0.099 0.090

Table 2. Input degredation (LeRF): AUCs reported for each attribution method. The lower the AUC the better.
Gradient GBP GradCAM InputMCT InputIntGrad NeuronMCT NeuronIntGrad NeuronIntGrad*

Cifar-10 0.037 0.028 0.010 0.019 0.019 0.009 0.009 0.007
Birdsnap 0.090 0.085 0.012 0.090 0.090 0.010 0.010 0.008
ImageNet 0.046 0.044 0.009 0.043 0.041 0.010 0.010 0.009

Figure 10. Path Analysis - Entire Network (Sparsity 80 & 99). Overlap between paths from different methods in entire network. Among
the pruning-based methods, only the path selected by DGR(init=1) overlaps with contribution-based methods.

Figure 11. Path Analysis - Layerwise (Sparsity 80 & 99). Overlap between paths from different methods in different layers of VGG-16.
Among the pruning-based methods, only the path selected by DGR(init=1) overlaps with NeuronIntGrad.



Figure 12. Feature Attribution. The gradients of the locally linear critical paths at different sparsity levels for NeuronIntGrad (top) and
NeuronMCT (bottom).



Figure 13. Comparison with Feature Attribution Methods. Comparison between attribution maps dervied our proposed methods (right)
vs. gradient-based attribution methods on ResNet-50. Note the improvement of integrated gradients on the neurons (NeuronIntGrad) over
integrated gradients on input (InputIntGrad).



Figure 14. Comparison with Feature Attribution Methods. Comparison between attribution maps dervied our proposed methods (right)
vs. gradient-based attribution methods on VGG-16. Note the improvement of integrated gradients on the neurons (NeuronIntGrad) over
integrated gradients on input (InputIntGrad).


