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Table 1: (Best viewed in color) Quantitative comparison
of our method against five baseline methods on real-world
Stanford (top) and EPFL (bottom) datasets. As a metric, we
use reprojection error×10−2 as a proxy for depth accuracy as
no ground truth exists. The top three results are highlighted in
gold , silver , and bronze .

Light Fields
Reprojection Error

[6] [4] [1] [5] [2] Ours

Bulldozer 2.06 1.90 3.57 1.87 2.44 1.67
Bunny 1.18 1.08 1.57 1.08 1.10 0.96
Chess 1.72 3.19 1.63 1.54 1.66 2.22
Eucalyptus 1.19 1.03 1.55 1.11 1.14 1.01
Jelly Beans 1.36 1.78 1.71 1.40 1.68 1.27
Lego 3.13 3.50 4.98 2.57 3.19 2.38
Tarot 15.1 12.1 17.1 10.5 17.2 9.98
Treasure 2.51 1.89 2.35 1.96 2.18 1.87
Truck 1.49 1.39 1.80 1.33 1.37 1.24
Average 3.30 3.10 4.03 2.60 3.55 2.51

Bikes 2.26 4.85 2.24 5.13 2.39 2.24
Grid 3.33 6.46 3.05 6.84 3.20 2.87
Silos 1.77 3.34 1.85 3.41 2.01 1.69
Sphynx 2.37 4.80 2.31 5.21 2.50 2.30
Average 2.43 4.86 2.36 5.14 2.53 2.28

A. Expanded Results

In Table 1, we compare performance on the real-world Stan-
ford and EPFL light fields, with the methods of Zhang at al. [6],
Li et al [4], Jiang et al. [1], Shi et al. [5], and the central-view re-
sults [2] of Khan et al. [3]. No ground truth depth data exists for
these scenes. As a proxy for depth accuracy we use reprojection
error×10−2 in RGB color space induced by warping the central
view onto the corner views using the estimated disparity map.

Our approach is competitive or better than other methods
except on the Chess light field, which exhibits strong specular

effects due to polished metal materials. However, featureless
backgrounds cause our edges to be diffuse (Figure 2).

We also include error maps for all light field datasets, along
with depth maps for all example light fields listed in the main
and supplemental documents. Please see Figures 3 and 4 for
synthetic scenes, Figures 5 and 6 for the Stanford scenes, and
Figures 7 and 8 for the EPFL scenes. For the additional results
presented here, we only run a single pass over each parameter.

B. Noise Handling

We evaluate the robustness of our method to noise by
randomly adding Gaussian noise of increasing variance to 50%
of the original points. We find our method robust to position
noise and still capable under significant disparity noise. Figure 1
shows results for the Dino scene

Figure 1: Robustness of our method to noise (Dino light field).
The ground truth scene has mean disparity -0.1 with SD 0.73.

C. Supervised Loss

In the main paper, we describe a validation of our differen-
tiable rendering and diffusion approach using a supervised loss
against ground truth data. In Figure 9, we present MSE and
bad pixel metrics over iterations of the optimization for both the
HCI dataset and our new living room and piano realistic scenes.
For comparison, we also mark the performance of five existing
methods. In Figure 10, this experiment shows that our approach
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can produce errors close to zero, and validates the potential of
such an approach in the best case.

Still, why do the errors not reduce to zero? As Figure 10
shows, the presence of outliers in the original point set and the
lack of labels in regions with fine detail prevents the diffusion
from entirely eliminating errors. Such sources of error occur
in all six light fields to varying degrees.

D. Point Sparsity
In Figure 12, we evaluate the performance of the optimiza-

tion routine by varying the point set size. We observe that
for the bad pixels metrics, the routine converges at the same
minima even when only half the original point set is used. For
MSE, having more points is helpful. This is expected as a larger
point set is more helpful in filtering the effect of outliers.

E. Ray Attenuation Formula

The attenuation factor T at distance s from the image plane is defined as
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(From Equation 4, main paper.)
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As σZ−→0, the density contribution at any point s along the ray will come from only a single Gaussian. Thus, we can write
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(Figure 5, main paper describes the bounds [0,t].)
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Figure 2: Our results on the real world light fields of the Stanford dataset.



Figure 3: Qualitative comparison of our method with all baselines on the HCI dataset, and the light fields Living Room and Piano.
From top to bottom: Zhang et al. [6], Li et al. [4], Jiang et al. [1], Shi et al. [5], Khan et al. [2], and our approach.
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Figure 4: A visualization per-pixel L1 error for all methods (lighter regions have higher error). From top to bottom: Zhang et al. [6],
Li et al. [4], Jiang et al. [1], Shi et al. [5], Khan et al. [2], and our approach.
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Figure 5: Qualitative comparison of our method with all baselines on the Stanford dataset. From top to bottom: Zhang et al. [6],
Li et al. [4], Jiang et al. [1], Shi et al. [5], Khan et al. [2], and our approach.

Figure 6: A visualization of the reprojection error for all methods on the Stanford dataset (lighter regions have higher error). From
top to bottom: Zhang et al. [6], Li et al. [4], Jiang et al. [1], Shi et al. [5], Khan et al. [2], and our approach.



Figure 7: Qualitative comparison of our method with all baselines on the EPFL dataset. From top to bottom: Zhang et al. [6], Li
et al. [4], Jiang et al. [1], Shi et al. [5], Khan et al. [2], and our approach.



O
ur
s

K
ha
n2
0

Sh
i1
9

Ji
an
g1
8

Li
20

Zh
an
g1
6

Figure 8: A visualization of the reprojection error for all methods on the EPFL dataset (lighter regions have higher error). From
top to bottom: Zhang et al. [6], Li et al. [4], Jiang et al. [1], Shi et al. [5], Khan et al. [2], and our approach.



(a) Evaluation metrics plotted over all iterations of the optimization with supervised loss (HCI Dataset). The top row shows results on
individual light fields in the dataset. The bottom row compares average performance over the dataset with the baseline methods of Zhang et
al. [6], Khan et al. [2], Li et al. [4], Shi et al. [5] and Jiang et al. [1]. The bumps in the curve occur where we switch optimization parameters.

(b) Evaluation metrics for the Piano and Living Room light fields with supervised loss.

Figure 9: We validate our image-space representation and optimization using ground truth depth to supervise the optimization using
the same routine as Section 3.5. This generates high-quality results on all four evaluation metrics (MSE is plotted on a logarithmic
scale). This confirms the potential of our differentiable sparse point optimization and diffusion method.



Figure 10: Disparity maps generated by our method using supervised loss. (a)–(f): Boxes, Dino, Sideboard, Cotton, Living Room
and Piano. The presence of outliers in the original point set (green boxes), and the lack of labels in regions with fine detail (blue
boxes) prevents the diffusion from entirely eliminating errors. Such sources of error occur in all six light fields to varying degrees.

Figure 11: Our disparity maps with self-supervised loss. As expected, specular surfaces (green boxes) are especially difficult to
label correctly with a self-supervised reprojection loss; Figure 3 shows that all methods suffer in these areas.



Figure 12: We evaluate optimization performance with varying point set size. We report average performance over all iterations
on cotton and dino using 100%, 75% and 50% of the original point set.
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