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A. Semi-Supervised Any-shot Segmentation

In Equation 5 of the main paper we discuss the formu-
lation of the novel segmentation head fyy=es (z), which is
obtained via a structured transfer from the base segmenta-
tion head fyses (z). We provide more details on how this
is implemented in practice. Our implementation of segmen-
tation module can be seen an extension to the Fast R-CNN
[7] pipeline described in Section 4 of the main paper. In
particular, the segmentation module consists of a transposed-
convolution layer (nn.ConvTranspose?2D), followed by
RelU, and a 1 x 1 convolution layer (nn.Conv2D). The
feature vector z; ; for a proposal j in image i is of dimension
(2048 x 7 x 7) where 2048 is the number of channels and 7
is the spatial resolution of the proposal’s feature map. The
segmentation module upsamples z (as in the main paper we
drop ¢, 7 indexing) using the transposed convolution layer
with a kernel size of 2, and then produces a class-specific
mask using a 1 x 1 convolution layer. The resulting mask
output is of size (|C| x 14 x 14), where C is the total number
of object classes.

In Eq. 5 of the main paper, fyy:s(-) is the class-specific
output of the segmentation module obtained after the 1 x 1
convolution. During training, we use the same loss formula-
tion for L,k as described in [8], where a per-pixel binary
cross-entropy loss is used. During inference, the mask is
interpolated to fit the regressed proposal (as obtained by
Eq.(2) and Eq.(4) in the main paper) to produce the final
output. For the semi-supervised zero-shot (k = 0) scenario,
the predictions for novel classes can be done as in Eq. (5)
but omitting the “instance-level direct adaptation” term.

B. Implementation Details

For base-training, we train our model jointly with
weak-supervision and base-detection/-segmentation losses
with equal weighting (see Section 4.3). In particular,
we use image-level data for all the classes to train the
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weakly-supervised OICR [22] branch, and use detec-
tion/segmentation data of base classes for training base de-
tectors/segmentors. Unless pretrained proposals are used,
the proposals used for training weakly-supervised branch
come from the RPN trained using the base-detection branch.
For the zero-shot experiments (k = 0) in Section 5.1, similar
to the baselines, we replace the RPN with the precomputed
MCG proposals [16]. We use 4 Nvidia Tesla T4 GPUs
to train models. We build on top of Detectron2 [27] li-
brary written in PyTorch [15] framework, and unless men-
tioned, we keep their default configuration: SGD as the
optimizer, Rol Align [8] as the pooling method, ResNet
layer sizes/parameters. We use the standard loss for Faster
R-CNN, i.e., cross-entropy loss for classifier and smooth-L1
loss for regressor as described in [17].

Note that, in the following text, an iteration refers to a
gradient step, and not the total number of examples in the
training set.

Semi-Supervised Object Detection We train on the
MSCOCO 2015 [12] data for semi-supervised zero-shot
(k = 0) and MSCOCO 2017 [12] for semi-supervised few-
shot (k > 0) experiments. We use 270K iterations (default
in Detectron2 [27]) to account for more data. For fine-tuning,
we use 1000 iterations for 12-shot, 3000 iterations for 33-
shot, 6000 iterations for 55-shot, 8000 iterations for 76-shot,
and 10000 iterations for 96-shot experiments.

Few-shot Object Detection: VOC. We train on VOC 07 +
12 dataset. We use a learning rate of 0.02 over 30K iterations.
We decrease the learning rate by a factor of 10 at 12K and
24K iteration.

For fine-tuning, we are given k-shot data for novel classes
where k € {1,2,3,5,10}. We linearly scale the number of
SGD steps for optimizing over the k-shot data. In particular,
we choose 50 iterations for k¥ = 1, 100 iterations for k = 2,
and similarly linearly scale to 500 iterations for k£ = 10.



#Shots AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS AR]\/[ ARL
k=0 UniT (Ours) 189 36.1 175 87 204 276 19.1 333 35.0 16,5 355 485
Transfer: FRCN [28] 6.5 13.4 5.9 1.8 53 11.3 126 17.7 17.8 6.5 144 286
Kang et al. [10] 56 123 4.6 0.9 3.5 10.5 10.1 143 14.4 1.5 8.4 28.2
k=10 Wang et al. [26] 7.1 14.6 6.1 1.0 4.1 12.2 119 151 15.5 1.7 9.7 30.1
Yan et al. [28] 87 19.1 6.6 23 1.7 14.0 12.6 178 17.9 7.8 15.6 272

Wang et al. [25] 10.0 - 93 - - - - - - - - -
UniT (Ours) 21.7 408 206 91 238 313 211 351 364 165 37,5 51.0
Transfer: FRCN [2§] 1.1 216 103 29 8.8 18.9 150 21.1 21.3 10.1 179 332
Kang et al. [10] 9.1 19.0 7.6 0.8 4.9 16.8 132 177 17.8 1.5 104 335
i = 30 Wang et al. [26] 113 217 8.1 1.1 6.2 17.3 145 189 19.2 1.8 11.1 344
Yanet al. [28] 124 253 108 28 11.6 19.0 150 214 21.7 8.6 200 321

Wang et al. [25] 13.7 - 134 - - - - - - - - -
UniT (Ours) 231 430 216 98 253 338 224  36.7 379 16.5 38.7 533

Table Al: Complete few-shot object detection results on COCO. FRCN=Faster R-CNN with ResNet-50 [9] backbone.

Similar to [25, 28], we use ResNet-50 as the backbone.

Few-shot Object Detection: COCO. In the case of
COCO dataset, we use 270K iterations (default in Detec-
tron2 [27]) to account for more data as compared to VOC.
For fine-tuning, we use 500 iterations for 10-shot and 1500
iterations for 30-shot experiment.

Weakly-supervised Object Detection The results are
shown in Section E. Here we use a pre-trained VGG-16
[19] as the backbone to be consistent with the prior state-of-
the-art works [3, 22, 1, 18]. We use a learning rate of 0.001
over 40K iterations for optimization, dropping it down to
0.0001 for the next 30K iterations.

We will also make all our code publicly available.

C. Few-shot Object Detection on MSCOCO

As described in Section 5.2 of the main paper, we com-
pare the performance of UniT against state-of-the-art ap-
proaches on the task of Few-Shot Object Detection on the
MSCOCO dataset [12]. Please refer to Section 5.2 for task
and dataset specifications. Similar to [25, 28], we choose
ResNet-50 [9] as the backbone. The k-shot tasks are sam-
pled following [28] with k& € {0, 10,30}. Due to lack of
space, results in Table 4 of the main paper only compared
our model against the baselines on 10-shots. Here we present
the complete comparison in Table A1l.

As can be seen from Table A1 we get a significant boost
in performance even on large number of shots k = 30. As
UniT uses additional weak image-level data for novel classes,
this is not an equivalent comparison (see Sec. 5.3 of the main
paper for comparisons under similar annotation budget). But
we want to highlight that such data is readily available, much
cheaper to obtain [2], and leads to a significant improvement
in performance.

D. Comparison to Few-shot Instance Segmen-
tation

As described in Section 5.2 of the main paper, we analyse
the performance of our proposed approach on the task of
Few-shot Instance Segmentation. Please refer to Section
5.2 for task and dataset specifications. Similar to [28], we
choose ResNet-50 [9] as the backbone and use an additional
segmentation head (as described in Section A of the supple-
mentary). The k-shot tasks are sampled following [28] with
k € {0,5,10,20}, and we follow the standard evaluation
metrics on COCO [&]. The complete results are shown in
Table A2. Our approach consistently improves over [28],
demonstrating that our approach is not limited to bounding
boxes and is able to generalize over the type of downstream
structured label, including segmentation mask.

E. Weakly-Supervised Object Detection

Dataset. For completeness, we compare our approach
against existing weakly-supervised object detection ap-
proaches. We evaluate our approach on VOC 2007 [6] which
consists of a trainval set of 5011 images for training and 4951
images for test, keeping in line with the prior related works
[3,22,21,24, 1]. As we assume instance-level supervision
for base classes in the dataset, we report performance on the
novel classes for three different splits specified in Section 5.2
and [25, 28]. Note that, similar to the baselines, we assume
zero instance-level supervision for novel classes (i.e. k = 0).

Results. Table A3 provides a summary of the results. Simi-
larto [3,22,21, 1, 18], we use a pre-trained proposal network
(Selective Search [23]) and an ImageNet pretrained VGG-16
[19] backbone for fair comparison. As we assume additional
supervision for base classes, this is not an equivalent compar-
ison. However, for novel classes, all methods have access to
the same data. Our results beat the strong baseline of [ 1] on 2
out of 3 novel splits, and provides comparable performance



Box Mask
#Shots Method AP AP5U AP75 APS APy AP AP AP50 AP75 APS AP,; APp,
k=0 Ours 20.2 36.8 19.5 85 209 289 17.6 327 170 5.6 17.6 27.7
k=5 Yan et al. [28] 35 99 12 12 39 58 28 69 17 03 23 47
- Ours 22.1 399 21.7 9.2 23.0 31.7 20.0 37.5 19.0 6.1 194 311
k=10 Yan et al. [28] 56 142 30 20 66 838 44 106 33 05 36 72
o Ours 22.8 41.6 219 94 244 323 20.5 38.6 19.7 6.0 20.5 318
k= 20 Yan et al. [28] 62 166 25 17 67 96 6.4 148 44 07 49 93
N Ours 238 42.7 238 99 249 34.6 214 39.2 212 6.2 20.5 33.2

Table A2: Complete Table for Few-shot Instance Segmentation on COCO.

All models use ImageNet [4] pretrained

ResNet-50 [9] as the backbone.

Novel split 1

Novel split 2

Novel split 3

Method bird bus cow mbike sofa mean|aero bottle cow horse sofa mean|boat cat mbike sheep sofa mean
WSDDN [3] 31.5 645 3577 55.6 40.7 45.6 {394 12.6 357 344 40.7 32.6 163 42.6 55.6 30.2 40.7 37.1
OICR [22] 31.1 65.1 447 655 469 50.7 |58.0 13.0 44.7 37.8 469 40.1 |194 28.4 655 41.7 469 404
PCL [21] 39.3 62.9 525 67.7 57.5 56.0 |54.4 1577 525 393 57.5 439 (192 30.0 67.7 46.6 57.5 44.2
PredNet [1] 52.8 74.5 53.0 70.8 60.7 624 |66.7 247 53.0 69.9 60.7 55.0 314 673 70.8 54.6 60.7 57.0

Wetectron [18]  57.0 69.1 73.2 77.7 53.8 66.2 |68.8 28.9 732 544 53.8 55.8|27.7 67.0 77.7 64.1 53.8 58.1
UniT + OICR (Ours) 45.5 71.8 75.1 74.0 52.7 63.8 |64.0 17.6 73.8 599 544 53.9(30.8 71.7 749 634 55.1 59.2

Table A3: Comparison to Weakly-supervised methods. Comparison on the three novel splits described in Section 5.2 and

[28, 25]. All methods use VGG-16 [19] as the backbone.

to the state-of-the-art [ 1 8]. Our significant improvement over
OICR [22], which we build upon, on novel classes (~35%
on average across three splits) highlights the effectiveness of
our proposed transfer. We note that our approach is agnostic
to the model architecture used for weak-supervision, and the
model performance can be improved further if built on top
of better weak detectors (e.g. [1, 18]).

F. Explanation of Annotation Budget Conver-
sion Factor

In Section 5.3 of the main paper, we perform a constraint
annotation budget analysis to facilitate an equivalent com-
parison to existing few-shot detection works [25, 10], while
simultaneously analysing the relative importance of image-
level annotations. To this end, for each value of k instance-
level annotations in the few-shot setup, we trained a variant
of UniT that assumes only 7 x k image-level annotations for
novel classes, which is referred to as UniTyyqget—r. Here
we describe the rationale behind using this conversion factor
of 7 for the VOC dataset [5], derived from annotation times
reported in the literature.

Image-Level Annotation (20.0 sec/image). As per [2] and
[13], collecting image-level labels takes 1 second per class.
As VOC [5] has 20 object classes, generating an image-level
annotation is expected to take 20 seconds per image [2].

Instance-Level Bounding Box Annotation (137.2

sec/image). [2] reports an expected annotation time of
239.7 seconds per image for VOC [5]. However, this
estimate additionally assumes time required to obtain
instance segmentations. As the methods in the few-shot
detection domain [25, 10] that we compare against in
Section 5.3 only use bounding box annotations to train their
models, we modify this estimate of 239.7 seconds to get a
more accurate conversion factor.

There are 1.5 object classes per image on average in
the VOC 2012 dataset [5]. As mentioned in [2], it takes
1 second to annotate every object class that is not present
(i.e. obtain an image-level “no object” label). This amounts
to 20 — 1.5 = 18.5 seconds of labeling time. In addition,
there are 2.8 object instances on average in the VOC dataset
[5]. As mentioned in [20], if we use their efficient system to
crowdsource annotations, the median time to get a bounding
box annotation is 42.4 seconds (note that the average time
is much higher at 88.0 seconds). Therefore, it is expected
to take 2.8 x 42.4 = 118.7 seconds to obtain bounding box
annotations per image in VOC. Thus, the total annotation
time is: 18.5 4 118.7 = 137.2 seconds per image.

It can be seen that obtaining instance-level annotations is
approximately 137.2/20 = 7 times more time consuming.
Hence, we use a conversion factor of 7 for our experiments
in Section 5.3. Also, according to [14], this estimate of 42.4
seconds per bounding box is conservative. It doesn’t take
into account the errors encountered during crowdsourcing
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Figure Al: Normalized lingual similarity matrix for the second novel split in PASCAL VOC. Note that S'" is proposal-
agnostic. Most of the similarities are intuitive and semantic — sofa is most similar to a chair; horse to a dog and a
sheep; cow is similar to a sheep; aeroplane is related to other transportation vehicles like car and boat. A notable
departure is a bott 1e which has no closely related categories among base classes, resulting in less interpretable similarity

and transfer.

Method k=0 k=5
bird bus cow mbike sofa mean|bird bus cow mbike sofa mean
weak 58.1 73.5 704 68.5 49.1 63.9(59.6 759 727 71.8 55.1 67.0
weak + avg(A) 57.8 73.5 71.2 68.3 47.8 63.7160.0 76.0 73.6 712 54.2 67.0
weak + Slczl’s‘ 55.0 742 73.6 70.8 46.6 64.1 |58.3 76.8 76.1 73.5 52.1 674
weak + SZ’S‘ +S’C’f55 56.2 74.6 739 71.2 48.8 649 (59.3 77.1 77.2 739 52.0 67.9
weak + SZZMQ + Szli;mg 69.9 83.4 86.1 81.1 57.8 75.7 |69.8 84.0 86.2 81.3 59.0 76.1

Table A4: Ablation study on the VOC 07 + 12 dataset. Please refer to Section G for model definitions. We report AP5y on

the first split in [

(e.g. some boxes being rejected and needing to be redrawn).
Therefore, we expect this conversion factor of 7 to be higher
in practice.

G. Ablation study

Please refer to Section 5.2 of the main paper for a detailed
explanation of task setup. We perform ablation over the
terms used in Equations (3), (4), and (5) of the main paper
on the novel classes for the VOC [12] and MSCOCO [12]
datasets. We show the benefit of using our proposed transfer
both in the zero-shot (k = 0) and the few-shot (k > 0)
setting. We first describe the ablated variants of our model,
and then discuss the results. The results are summarized in
Table A4 for VOC and Table A5 for MSCOCO.

We start by forming detectors using only the weakly-
supervised branch fyywear (denoted as “weak” in Tables A4
and A5), and progressively add refinement terms to observe
their impact on detection/segmentation performance. We
then incorporate the transfer from the base classes f AWels

ase

1, and show results on zero-shot (k = 0) and few-shot (k = 5).

into the weak detector (see Equation 3 in the main paper).
For each novel class, we first compare to a simple baseline
approach: averaging over all the base classes (denoted by
weak + avg(A)). We note that a naive averaging doesn’t
provide any performance improvements, suggesting the need
for a more informed transfer between base and novel classes.
We then explore the role of proposed similarity matrices, de-
tailed in Section 4.2 of the main paper. The similarity matrix
between base and novel classes can be decomposed into two
components: lingual similarity S'” and visual similarity
Svis(z). We analyse the impact of using the aforementioned
similarities in obtaining category-aware classifiers, regres-
sors, and segmentors. Following the terms in Eq. (3), (4),
and (5) of the main paper, we define ablated variants of our
final model.

* “weak + S!"” is the model where-in the category-
aware classifier for the novel classes is obtained by us-
ing only the lingual similarity, and the category-aware

regressor is fixed to predict zeros (i.e. the model uses



Box

Mask

Method AP AP;, AP;5; APg AP,; AP, AP AP;, AP;5; APg AP,; AP,

weak 107 283 51 53 129 143 47 176 1.1 21 60 6.0

weak + avg(A) 107 283 5.1 53 129 142 47 175 1.1 20 60 6.0
weak + Slin 114 297 57 63 132 146 50 185 1.0 23 60 6.1

weak + Sl Svis 117 299 60 64 133 147 52 187 12 24 61 6.1
weak + Sl 4+ SUE 202 368 195 85 209 289 85 250 45 28 87 120
weak 4 Slin + Suis 20.2 36.8 19.5 8.5 20.9 289 17.6 327 170 5.6 17.7 27.7

cls,reg,seg cls,reg,seg

Table A5: Ablation study on the MSCOCO dataset. Please refer to Section G for model definitions. The results show the

zero shot (k = 0) performance of the models.

Novel classes

Base classes

Shot Method bird bus cow mbike sofa mean aero bike boat bottle car cat chair table dog horse person plant sheep train tv mean mAP
0 Wang et al. [25] - - - - - 90| - - - - - - - - - - - - - - - 80.8(629
UniT (Ours) et al. [25]{69.9 83.4 86.1 81.1 57.8 75.6 (82.0 84.7 70.0 69.2 87.9 88.4 60.5 71.3 84.8 86.1 84.5 54.0 82.2 85.1 78.6 78.0|77.3
Joint: FRCN [28] [13.7 04 64 08 0.2 4.3 (759 80.0 659 61.3 85.586.1 54.1 68.4 83.3 79.1 78.8 43.7 72.8 80.8 74.7 72.7 |55.6
Transfer: FRCN [28] |29.1 34.1 55.9 28.6 16.1 32.8 (67.4 62.0 54.3 48.5 74.0 85.8 42.2 58.1 72.0 77.8 75.8 323 61.0 73.7 68.6 63.6 559

3 Kangeral. [10]  [26.1 19.1 40.7 20.4 27.1 26.7|73.6 73.1 56.7 41.6 76.1 78.7 42.6 66.8 72.0 77.7 68.5 42.0 57.1 74.7 70.7 64.8 |55.2
Yan et al. [28] 30.1 44.6 50.8 38.8 10.7 35.0(67.6 70.5 59.8 50.0 75.7 81.4 449 57.7 76.3 749 769 347 58.7 74.7 67.8 64.8|57.3

Wang et al. [25] - - - - - 4470 - - - - - - - - - - - - - - - 791|705

UniT (Ours) 70.0 83.9 86.2 81.5 58.0 75.9 (81.9 84.7 69.0 68.9 87.9 88.1 60.4 71.3 84.7 86.2 84.4 54.2 82.0 84.7 78.8 77.8|77.3

Joint: FRCN [28] [14.6 20.3 19.2 24.3 2.2 16.1(78.1 80.0 65.9 64.1 86.0 87.1 56.9 69.7 84.1 80.0 78.4 44.8 74.6 82.7 74.1 73.8(59.4
Transfer: FRCN [28] [40.1 47.8 45.5 47.5 47.0 45.6 (65.7 69.2 52.6 46.5 74.6 73.6 40.7 55.0 69.3 73.5 73.2 33.8 56.5 69.8 65.1 61.3 (574

10 Kang et al. [10] 30.0 62.7 43.2 60.6 39.6 47.2(65.3 73.5 54.7 39.5 75.7 81.1 353 62.5 72.8 78.8 68.6 41.5 59.2 76.2 69.2 63.6|59.5
Yan et al. [28] 52.555.952.7 54.6 41.6 51.5(68.1 73.9 59.8 54.2 80.1 82.9 48.8 62.8 80.1 81.4 77.2 37.2 65.7 75.8 70.6 67.9 |63.8

Wang et al. [25] - - - - - 56.0]| - - - - - - - - - - - - - - - 784|728

UniT (Ours) 71.4 84.4 86.3 82.2 59.2 76.7 (82.0 84.6 68.9 69.3 87.7 88.0 59.7 71.4 84.9 86.5 84.6 54.0 81.2 84.0 78.3 77.7 |77.4

Table A6: Base class performance on VOC. AP and mAP on VOC2007 test set for novel classes and base classes of the first
base/novel split. We evaluate the performance for 0/3/10-shot novel-class examples with FRCN under ResNet-101. Note

that as Wang et al. [

] do not report per-class performance numbers, we just show their reported aggregated performance.

Additionally, all models use the same amount of annotation for the base classes.

the output of the category-agnostic Fast-RCNN regres-
sor rbox). As there is no estimate for the novel mask
head, we predict a uniform mask over the selected
bounding box region.

o “weak + S!i" + SVis” is defined as the model where-in
the category-aware classifier for the novel classes is
obtained by using both lingual and visual similarities
(Eq. (3)), and the category-aware regressor is fixed
to predict zeros. As there is no estimate for the novel
mask head, we predict a uniform mask over the selected

bounding box region.

e “weak + Slcilzreg + z;;reg” is defined as the model
where-in both the category-aware classifier and the
category-aware regressor for the novel classes is ob-
tained by using lingual and visual similarities (Eq. (3))
and (4)). As there is no estimate for the novel mask
head, we predict a uniform mask over the selected
bounding box region. For experiments in Table A4,

this is the complete UniT model.

e Finally, “weak + SZ@}T%SW + Szlij7reg7seg” is defined
as the model where-in the category-aware classifier,
the category-aware regressor, and the category-aware
segmentor for the novel classes is obtained by using
lingual and visual similarities (Eq. (3), (4), and (5)).
For experiments in Table A5, this is the complete UniT
model.

From Table A4 it can be seen that adding each of our
terms improves model performance. Particularly, transfer-
ring information from base regressors to novel regressors
(“weak + Sl2 |+ SYs ™) provides a significant boost.
We additionally show that this trend holds even when the
models are fine-tuned on few-shot (k = 5) examples for
novel classes. Table A5 further highlights the effectiveness
of our proposed transfer on segmentation masks (“weak
+ SU egiseg T SUS reg.seq”)- Note that the final two lines
in Table A5 only differ in mask AP performance as the
regression transfer terms are identical in both the ablated
models.

Figure A3 provides qualitative examples to further high-



light the impact of using our proposed transfer from base
to novel classes. Column (a) in Figure A3 refers to “weak”,
column (b) refers to “weak + SLm +Svs” column (c) refers

to the “weak + S'" reg T Szl"jmeg” with £ = 0, and column
: + Sm‘s

(d) refers to the “weak + SZ’S‘)TW cls.req after being
trained with k& = 5 shots. It can be seen that the “weak”
model either fails to identify all objects or doesn’t generate
high-probability proposals for the desired objects (column
(a)). “weak + SICZIZ + SUi5” improves performance by gener-
ating a bunch of reasonable proposals (column (b)). “weak
+ 8L .+ SUs ., further refines the proposals to obtain
accurate bounding boxes for the objects (column (c)). Fi-
nally, fine-tuning on k& = 5 shots improves the bounding box

confidence and slightly refines the predictions (column (d)).

H. Analysis of Similarity Matrices

As described in Section 4 of the main paper, the key
contribution of our approach is the ability to semantically
decompose the classifiers, detectors and segmentors of novel
classes into their base classes’ counterparts. To this end, we
define a proposal-aware similarity S(z) € R|Crovet|x[Coasel
which is further decomposed into two components: lingual
S’ and visual SY**(z) similarity. Please refer to Section
4.2 of the main paper on details pertaining to how these
similarities are computed.

We qualitatively visualize these similarity matrices to
highlight the intuitive semantics learned by our proposed
model. Figure Al shows the normalized lingual similarity
matrix 84" € RICnovet|X|Crasel for the second novel split in
PASCAL VOC. Figure A2 shows the normalized visual sim-
ilarity 8U%*(z) € RICvasel for each proposal z (highlighted
in blue).

I. Few-shot Performance on VOC’s Base
Classes

Due to lack of space, in the main paper, we focus on the
detection/segmentation results obtained on the novel object
classes; however, our model also learns to detect/segment
base class objects as well. We now illustrate that our pro-
posed method improves performance on novel classes as the
value of k is increased, without any significant performance
drop on base classes. The experimental setup and baselines
are identical to the one described in Section 5.2 of the main
paper. Table A6 summarizes results on VOC [6] for the 1-st
novel split with k-shots, k& € {0, 3,10}.

It is important to note that we are not using any addi-
tional annotations for the base classes (when compared to
[10, 28, 25]). It can be seen that our model’s performance
on novel classes steadily increases with increased k, while
simultaneously retaining accuracy on base classes.

Our slightly poorer performance on base classes com-
pared to [25] can be attributed to the fact that [25] use feature
pyramid networks (FPN) [ I] whereas we don’t. According

to [1 1], FPN provides a performance improvement of about
3.8 on AP5g (See Table 3 in [11], rows (a) and (c)). Our
approach, despite not using FPNs, only performs 2.8 points
poorer on k = 0. In addition, this gap reduces as the value
of k is increased (1.3 AP5p on k = 3; 0.7 AP5g on k = 10).
Also, compared to [25], UniT has a smaller drop in base
class performance as k is increased. As an example, when
k is increased from O to 5, UniT has a performance drop
of 0.2 AP5p on base classes whereas [25] has a larger drop
of 1.7 AP5p. This observation highlights the fact that our
proposed approach is better at retaining base class informa-
tion compared to the existing state-of-the-art in [25]. This
improved retention can be mainly attributed to the structured
decomposition of our detectors: weak detector + learned
refinement. We believe that such a decomposition results
in an inductive model bias that leads to convergence to an
ultimately better solution.

J. Additional Visualizations on MSCOCO De-
tection and Segmentation

We show additional visualizations highlighting the per-
formance of our approach on the MSCOCO [12] dataset.
The experimental setup is identical to the ones described in
Sections 5.2 of the main paper. Figure A4 shows additional
examples for the task of object detection, and Figure A5
shows additional examples for the task of instance segmen-
tation. Note that these visualizations are generated on novel
classes under the & = 0 setup.



(a) Complementary to S**™ that assigns weights to classes boat and car, SV*(z) is additionally able to capture that an acroplane
flying in the sky shares some visual characteristics with the class bird.

(b) Complementary to S'™ that gives a large weight to the class chair, SU**(z) is additionally able to capture that there is a high correlation
between the class person and the class sofa. This follows the common observation that people are likely to be sitting on a sofa.

© Mieke Kreunen

(¢) Complementary to S'™" that gives a large weight to the class dog, SV**(z) is additionally able to capture that the class horse is visually
similar to other animal classes bird, cat, and sheep. Additionally, it captures a correlation with the class person, which follows from
the observation that humans usually ride horses.

Figure A2: Visual similarity for the second novel split in PASCAL VOC. The input proposal z is highlighted in blue. The
visual similarity captures complementary information to the lingual similarity.



Figure A3: Qualitative Visualizations for the Ablation Study. (a) refers to the “weak” model, (b) refers to “weak + S“7 +

cls

vis» (c) refers to the “weak + S!" 4 8vs > with k = 0, and (d) refers to the “weak + S%" + 8Ys  * after being

cls cls,reg cls,reg cls,reg cls,reg
trained on k = 5 shots. Section G provides a detailed description of these models.



cou

FLYING T

Figure A4: Qualitative Visualizations. Semi-supervised zero-shot (k¢ = 0) detection performance on novel classes in
MS-COCO (color = object category).



Figure A5: Qualitative Visualizations. Semi-supervised zero-shot (k = 0) instance segmentation performance on novel
classes in MS-COCO (color = object category).
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