Discriminative Appearance Modeling with Multi-track Pooling for Real-time
Multi-object Tracking

Chanho Kim! Li Fuxin 2

1. Network Architecture Details

In this section, we present the network architectures used
in our experiments.

1.1. Track Proposal Classifier

Table 3 shows the network architecture of our joint ap-
pearance and motion model. We used this network to test
the proposed approach on the MOT Challenge Benchmarks
in Table 6, 7, and 8 of the main paper. Table 4 shows the ap-
pearance baseline model that we used in Table 2, 3, 4, and
5 of the main paper.

1.2. Track Proposal Classifier Input

For the appearance models, we first resize the in-
put image to 64 x 128 (width, height) and then sub-
tract the ImageNet mean from the image. For the
motion model, the location and scale of the detec-
tion bounding box is used as input. The motion

model input is represented by a 4-dimensional vector
zlnpleﬂ yl()plcfl w h .

<irpage width > image height > image width > image height)' We nor'm.al.lze

this motion input by subtracting the mean and then dividing

by the standard deviation before we feed it into the motion
model. The mean and standard deviation are calculated us-
ing the ground truth bounding boxes in the training videos.

1.3. Bounding Box Corrector

Following the bounding box regressor presented in [2],
we regress four scalars that correct the location and scale of
the original bounding box from the input image. We also
classify true and false positive detections using the same in-
put image by utilizing an additional prediction head. The
network architecture that we use for the box corrector is
shown in Table 5. We utilize the same CNN as the one
used in a track proposal classifier. Specifically, once the
track classifier is trained, we freeze all the CNN weights
and then train the linear layers in the two prediction heads
from scratch. We use raw DPM detections provided by the
MOT16 Challenge organizers as our training data to train
this model. We use this model when we run our tracker

Mazen Alotaibi 2

'Georgia Institute of Technology

James M. Rehg !

2Oregon State University

Training Set
MOT17 - {02, 04, 05, 09, 10, 11, 13}
MOT15 - {PETS09-S2L1, ETH - (Sunnyday, Bahnhof),
TUD - (Campus, Stadtmitte), KITTI-(13, 17)},

ETH - (Jelmoli, Seq01), KITTI - (16, 19),
PETS09-S2L2, TUD-Crossing, AVG-TownCentre

Validation Set
CVPR 19 (MOT Challenge) - {01, 02, 03, 05}

Test Set

MOT17 - {01, 03, 06, 07, 08, 12, 14}

Table 1. Split 1

Training Set
MOTI15 - {PETS09-S2L1, ETH - (Sunnyday, Bahnhof),
TUD - (Campus, Stadtmitte), KITTI-(13, 17)},

ETH - (Jelmoli, Seq01), KITTI - (16, 19),
PETS09-S2L2, TUD-Crossing, AVG-TownCentre

Validation Set
MOT17 - {02, 04, 05, 09, 10, 11, 13}

Test Set

MOT17 - {01, 03, 06, 07, 08, 12, 14}

Table 2. Split 2

without refining the input detections using Tracktor (i.e. Ta-
ble 7 and 8 of the main paper).

2. Additional Training Details

In this section, we explain our training settings for the
experiments in the main paper.

2.1. Dataset

Table 1 and 2 show the training, validation, and test sets
that we used in our experiments. For the final MOT Chal-
lenge Benchmark results in Table 6, 7, and 8 of the main
paper, the training sequences in Table 1 were used as the
training data.

2.2. Training Setting - Appearance Model

We used the SGD optimizer with the initial learning rate
of 0.005 for Bilinear LSTM and the initial learning rate
of 0.0005 for ResNet 50 (pre-trained on ImageNet). We

Soft-max 2
FC 2
FC-relu 24
Concatenation 24
2x FC-relu 16 2x FC-relu 8
Concatenation (m3") 16
Matrix-vector Multiplication-relu (m,*) 8 Max-pooling (m;) 8
Matrix-vector Multiplication-relu (M) (M —1)x8
Reshape 8 x 256 || Reshape 256 x 1 || Reshape (M —1) x 8 x 256 | Reshape 256 x 1 || FC-relu 8
LSTM 2048 LSTM (M —1) x 2048 Group Normalization 64
FC-relu 256 || FC-relu 256 || FC-relu (M —1) x 256 || FC-relu 256 || LSTM 64
ResNet-50 2048 || ResNet50 2048 || ResNet-50 (M —1) x 2048 || ResNet50 2048 || FC-relu 64
x 128 x 64 x 3 || x¢ 128 x 64 x 3 || x;_;; (M —1)x128 x 64 x 3 || x4 128 X 64 x 3 || xlocaton. scae 4

Table 3. The appearance + motion model used to generate the results in Table 6, 7, and 8 of the main paper. The number of non-target
object tracks used in the multi-track pooling module is represented by M — 1.

Soft-max 2
FC 2
Matrix-vector Multiplication-relu (m;) 8
Reshape 8 % 256 || Reshape 256 x 1
LSTM 2048
FC-relu 256 || FC-relu 256
ResNet-50 2048 || ResNet50 2048
Xy 128 x 64 x 3 || x4 128 x 64 x 3
Table 4. The baseline appearance model that we compared with

our proposed appearance model

FC 4 || Soft-max 2
FC 2

FC-relu 512 || FC-relu 512
Reshape 16384
ResNet-50 (Block4) 4 x 2 x 2048
; 128 x 64 x 3

Xi—1
Table 5. Bounding Box Corrector. ResNet-50 is shared with the
one in Table 3.

Soft-max 2
FC 2
FC-relu 8
Group Normalization [5] 64
LSTM 64
FC-relu 64
xlyoculion, scale 4

t
Table 6. Motion model. We first train this motion model from
scratch and use the pre-trained weights when we train the joint
model in Table 3.

trained the model with the initial learning rate for the first
4 epochs (~ 120k iterations), and then reduced the learn-
ing rate with the decay factor of 0.1 for the next 4 epochs
and reduced it one more time for the last 4 epochs (~ 360k
iterations in total).

For the actual tracking episodes, we used truncated
BPTT with a temporal window size of 10. We used all the
ground truth tracks in the current frame as our training data
so the mini-batch size in this case was equal to the number
of ground truth tracks in the current frame.

For the random tracking episodes, we used 40 frames
as the maximum frame gap between the randomly selected
start and end frame. Thus, each mini-batch contains a track

whose length is up to 40. Due to the limited GPU mem-
ory, the number of tracks for random tracking episodes was
limited by Npax. We used Nyax = 8 in our experiments.

2.3. Training Setting - Motion Model

We used the Adam optimizer [3] with the initial learning
rate of 0.001 for training the motion model in Table 6. We
trained the motion model with the initial learning rate for
the first 4 epochs (~ 120k iterations) and then reduced the
learning rate with a decay factor of 0.1 for the next 2 epochs
and reduced it one more time for the last 6 epochs (~ 360k
iterations in total).

2.4. Training Setting - Appearance and Motion
Model

We first trained the appearance and motion models sep-
arately as described above before jointly training the model
presented in Table 3. When the joint model was trained,
new layers (i.e. top five rows in Table 3) were trained from
scratch, and the rest of the layers (except for ResNet 50 in
which all the weights were frozen) were fine-tuned from the
pre-trained models. We used the SGD optimizer with the
initial learning rate of 0.005 for the new layers and 0.0005
for the pre-trained layers. We trained the model with the
initial learning rate for the first 2 epochs (~ 60k iterations),
and then reduced the learning rate with the decay factor of
0.1 for the next 2 epochs (~ 120k iterations in total).

When we trained the joint model, we realized that the ap-
pearance features can be stronger than the motion features
in the beginning of the training. As a result, our resulting
model heavily relied on the appearance features, often ig-
noring the motion features. In order to make our model
balance between these two types of features, we placed a
dropout layer on the appearance features right before we
concatenated the appearance and motion features (i.e. after
the 2x FC-relu layer on the appearance side in Table 3). In
the beginning of the training, we randomly dropped appear-
ance features and then gradually decreased the drop rate as
the training proceeded. This trick prevented the joint model
from relying too much on the appearance cues in the early

training stage. In our experiments, we used 0.9 as the drop
rate for the first ~19k iterations, 0.6 for the next ~10k iter-
ations, 0.3 for the next ~9k iterations, and 0.0 for the rest
of the training.

2.5. Online Hard Example Mining

We found that online hard example mining can improve
the model performance. We trained all the model with all
the training examples for the first two epochs (~60k itera-
tions). We trained the models for the remaining epochs with
top k hard examples (i.e. k examples that incurred high loss
values) in the mini-batch. We used £ = 30 in our experi-
ments.

2.6. Missing Detection Augmentation

We randomly drop the bounding boxes in the tracks for
missing detection augmentation. For each track in each
mini-batch, we randomly choose the missing detection rate
from a probability between 0.05 and 0.95. After selecting
the missing detection rate, we randomly drop the bounding
boxes in the selected track according to the selected rate.

2.7. Noisy Track Augmentation

In addition to using the ground truth tracks as the train-
ing data, we also generate tracks from noisy object detec-
tions. Given ground truth tracks and noisy detections, one
can assign correct track IDs to noisy detections by finding
an assignment that maximizes the Intersection over Union
score (IoU) between ground truth tracks and object detec-
tions. The MOT Challenge Benchmark provides public ob-
ject detections from three detectors (DPM [1], FRCNN [4],
SDP [6]). Thus, we generate three additional sets of noisy
tracks constructed from these public detections. Note that
the track-detection assignments are optimal although the
resulting tracks are noisier than the original ground truth
tracks. Localization and missing detection errors caused by
the object detector are embedded naturally in such tracks.

References

[1] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. [EEE Transactions on Pattern Analysis and
Machine Intelligence, 32(9):1627-1645, 2010. 3

[2] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Ma-
lik. Rich feature hierarchies for accurate object detection and
semantic segmentation. In CVPR, 2014. 1

[3] D.P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In /CLR, 2015. 2

[4] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with region
proposal networks. In NIPS, 2015. 3

[5] Yuxin Wu and Kaiming He. Group normalization. In ECCV,
2018. 2

[6] Fan Yang, Wongun Choi, and Yuanqing Lin. Exploit all the
layers: Fast and accurate cnn object detector with scale de-
pendent pooling and cascaded rejection classifiers. In CVPR,
2016. 3

