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This supplementary material presents deeper analyses of
the proposed method, its implementation details, and addi-
tional experimental results, all of which are omitted from
the main paper due to the space limit. Section 1 first intro-
duces relaxed MS loss, an integration of the label relaxation
and Multi-Similarity (MS) loss [3]. The generalization ca-
pability of our model is then illustrated in terms of the spec-
tral decay metric [2] in Section 2. Section 3 describes de-
tails of the multi-view data augmentation strategy. In Sec-
tion 4, we investigate the effect of hyperpameters on the
performance of our loss. Finally, in Section 5, we present
more qualitative examples for image retrieval before and af-
ter applying the proposed method on the three metric learn-
ing benchmarks.

1. Relaxed MS Loss
The proposed label relaxation technique can be applied

to other metric learning losses based on pairwise relations
of data. In this section, we present relaxed MS loss that is
a combination of the label relaxation and Multi-Similarity
(MS) loss [3], the state-of-the-art loss for pair-based metric
learning. Specifically, relaxed MS loss is obtained by using
relaxed relation labels instead of the binary class equiva-
lence indicator and replacing cosine similarity with the rel-
ative Euclidean distance, like relaxed contrastive loss in the
main paper. The relaxed MS loss is then formulated as
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where n is the number of samples in the batch, δ is a margin,
and α > 0 and β > 0 are scaling factors. Also, µi =
1
n

∑n
k=1 d

t
ij is the average distance of all pairs associated

with f ti in the batch.
Table 1 compares relaxed constrastive loss and relaxed

MS loss on the three benchmarks for deep metric learning in

the self-transfer and dimensionality reduction setting. The
details for training are the same as those for relaxed con-
trastive loss. We set α and β to 1 and 4 respectively in
the self-transfer setting and 1 and 2 respectively in the di-
mension reduction setting. As shown in the table, relaxed
MS loss achieves performance comparable to a relaxed con-
trastive loss in both settings. This result demonstrates the
universality of our label relaxation method.

However, performance of relaxed MS loss is worse than
that of the relaxed contrastive loss in most cases, and it de-
mands careful tuning of hyper-parameters for each setting.
In contrast, relaxed contrastive loss is overall better in terms
of performance, more robust against hyper-parameter set-
ting, and more interpretable due to its simplicity; this is the
reason why we choose relaxed contrastive loss as the repre-
sentative loss of our framework.

2. Generalization Effect of Label Relaxation

Spectral decay ρ [2] is a recently proposed generaliza-
tion measure for deep metric learning. It measures KL-
divergence between the singular value spectrum of training
data embeddings and a uniform distribution. Lower ρ value
means that a larger number of directions with significant
variance exists in the embedding space, thus indicates bet-
ter generalization [2].

In Fig. 1, Spectral decay ρ of the source and target em-
bedding models is presented. Target embedding models are
trained with our method and its variants. As shown in the
figure, target embedding models after embedding transfer
have lower ρ value than the source, and our method signif-
icantly reduces ρ value compared to its unrelaxed or L2-
normalized version. We argue that our method reduces ρ
value and improves generalization performance since the
relaxed relation labels and the relative pairwise distance
helps target embedding space to encode rich pairwise re-
lation without restriction on the manifold.
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Recall@K
CUB-200-2011 Cars-196 SOP

1 2 4 1 2 4 1 10 100

(a)
Source: PA [1] BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2
Relaxed contrastive BN512 72.1 81.3 87.6 89.6 94.0 96.5 79.8 91.1 96.3
Relaxed MS BN512 72.3 81.3 88.3 89.2 93.9 96.4 79.3 90.8 96.1

(b)
Source: PA [1] BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2
Relaxed contrastive BN64 67.4 78.0 85.9 86.5 92.3 95.3 76.3 88.6 94.8
Relaxed MS BN64 67.5 77.9 85.9 86.0 91.5 94.8 75.4 87.9 94.6

Table 1. Image retrieval performance of two types of relaxed losses in the two different settings: (a) Self-transfer and (b) dimensionality
reduction. Embedding networks of the methods are denoted by abbreviations: BN–Inception with BatchNorm. Superscripts indicate
embedding dimensions of the networks.
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Figure 1. Spectral decay ρ of source and target embedding models
trained on the Cars-196 dataset.

Methods Recall@1
CUB Cars

Ours 72.1 89.6
Ours w/o augmentation 71.5 89.0

Table 2. Effect of multi-view augmentation strategy on the CUB-
200-2011 (CUB) and Cars-196 (Cars) datasets.

3. Details of Multi-view Data Augmentation
In recent approaches to self-supervised representation

learning, the use of multi-view samples produced from the
same image plays an important role for performance im-
provement. We present a simple yet effective multi-view
augmentation strategy for enhancing the effect of embed-
ding transfer. It helps transfer knowledge by considering re-
lations between multiple views of individual samples, such
as relations between different parts of an object.

The overall procedure of our multi-view augmentation
is as follows. We first apply the standard random augmen-
tation technique multiple times to images of input batch.
Then, all augmented multi-view images are passed through

the source and target embedding networks. Note that the
source and target model take the same augmented image as
input. The output embedding vectors are concatenated and
used as the inputs of the embedding transfer loss. Fig. 2 il-
lustrates this procedure where the number of views is two.
The top and bottom of the figure describe the standard aug-
mentation technique and our strategy, respectively. When
using standard augmentation, only relations between differ-
ent samples are considered.

Applying a multi-view augmentation strategy for embed-
ding transfer allows knowledge transfer to consider more di-
verse and detailed relations between samples produced from
the same image. The empirical advantage of the multi-view
augmentation is verified in Table 2, where it improves the
stability and convergence of embedding transfer as well as
the performance of target embedding models.

4. Impact of Hyperparameters
We empirically investigated the effect of the hyperpa-

rameters δ and σ on performance. We examine Recall@1
in accuracy of relaxed contrastive loss by varying the val-
ues of the hyperparameters σ ∈ {0.25, 0.5, 1, 2, 4} and
δ ∈ {0.8, 0.9, 1, 1.1, 1.2}. As summarized in Figure 3, the
accuracy of our method was consistently high and outper-
formed state of the art in most cases when σ is greater than
0.25 and less than 4. Note that the values of δ and σ used in
the paper are not optimal as we did not tune them using the
test set.

5. Additional Qualitative Results
More qualitative results of image retrieval on the CUB-

200-2011, Cars-196, and SOP datasets are presented in
Fig. 4, 5, and 6, respectively. We prove the positive ef-
fect of the proposed method by showing qualitative results
before and after applying the proposed method in the self-
transfer setting; the source embedding model is Inception-
BatchNorm with 512 embedding dimension and trained
with the proxy-anchor loss [1]. The overall results indicate
that the proposed method significantly improves the source
embedding model. From the examples of the 2nd, 3rd, and
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Figure 2. Comparison of standard data augmentation (top) and our multi-view augmentation (bottom). Different colors and shapes represent
distinct samples.
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Figure 3. Recall@1 versus hyperparameters δ and σ on the CUB
dataset.

5th rows of Fig. 4, both models retrieve birds visually simi-
lar to the query, but only the models after embedding trans-
fer successfully retrieved birds of the same species. Mean-
while, the examples of the 2nd, 3rd, and 5th rows of Fig. 5
show that the model trained with our method provides ac-
curate results regardless of the color changes of the cars.
Also, in the examples of the 2nd and 3rd rows of Fig. 6,
the source model makes mistakes easily since the false pos-
itives are similar to the query in terms of appearance, yet it
becomes more accurate after applying to embedding trans-
fer with the proposed method.
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Query After Embedding TransferBefore Embedding Transfer
Figure 4. Top 5 image retrievals of the state of the art [1] before and after the proposed method is applied on the CUB-200-2011 dataset.
Images with green boundary are success cases and those with red boundary are false positives.

Query Before Embedding Transfer After Embedding Transfer
Figure 5. Top 5 image retrievals of the state of the art [1] before and after the proposed method is applied on the Cars-196 dataset. Images
with green boundary are success cases and those with red boundary are false positives.
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Query Before Embedding Transfer After Embedding Transfer
Figure 6. Top 5 image retrievals of the state of the art [1] before and after the proposed method is applied on the SOP dataset. Images with
green boundary are success cases and those with red boundary are false positives.
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