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Figure 1: Our local editing starts with a learned encoder for fast image-to-stylemap projection. We estimate the stylemaps w
and w̃ of the original x and the reference x̃ and transform them into multiple resolutions through the learned stylemap resizer.
For each resolution, we calculate the alpha blending of the two stylemaps using the user-defined binary mask m. Finally, the
learned generator produces the output using the spatially-mixed stylemaps. The right one shows an example generated using
our method.

A. Local editing in w+ space
This section illustrates how we perform local editing us-

ing StyleMapGAN. Although we already described the lo-
cal editing method in Section 3.3 of the paper, it is impossi-
ble to edit in detail due to the coarse mask resolution (8×8).
Contrary to the previous method, we propose a local edit-
ing method in w+ space. Regardless of the resolution of
stylemap (w), we can exploit detailed masks with resized
stylemaps (w+) in high resolutions.

Figure 1 shows the overview of blending on the w+

space. The edited i-th resized stylemap ẅ+ is an alpha
blending of w+ and w̃+:

ẅ+
i = mi ⊗ w̃+

i ⊕ (1−mi)⊗wi
+ (1)

where i-th resized mask mi is shrunk by max pooling. Al-

though the mask’s shape does not align with the 8 × 8
stylemap, we can precisely blend the two images on the w+

space.

B. Experiments in the high-resolution dataset
We evaluate our model on FFHQ at 1024 × 1024 res-

olution. Baseline is StyleGAN2, and we also test Im-
age2StyleGAN (A). StyleGAN2 official pretrained network
is used for a fair comparison. StyleMapGAN adopts 32×32
stylemap for the high-resolution dataset, compared to 8× 8
stylemap for 256× 256 image. StyleMapGAN-Light (E) is
a light version of StyleMapGAN; it reduces the number of
parameters of the generator. Another training setting (D) is
sequential learning, which trains the generator first and then
trains the encoder. In Table 1, we used the same protocol as
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Network Projection Joint learning G param(M) runtime(s) G GPU(GB) MSE LPIPS FIDlerp

A StyleGAN2 Image2StyleGAN 7 30.4 454.7 2.1 0.021 0.468 38.00
B StyleGAN2 StyleGAN2 7 30.4 142.2 2.1 0.093 0.467 34.65
D StyleMapGAN-Light Encoder 7 18.6 0.253 3.0 0.071 0.546 201.18
E StyleMapGAN-Light Encoder 3 18.6 0.253 3.0 0.017 0.347 13.52
F StyleMapGAN Encoder 3 46.4 0.249 3.1 0.016 0.344 13.68

Table 1: Comparison with StyleGAN2 on 1024 × 1024 FFHQ. We also explored the effect of other components such as
generator size and joint learning. StyleMapGAN-Light has reduced the number of channels of the stylemap resizer. 32× 32
stylemap is used for the large size of the image. “G” denotes the generator.

the paper to calculate MSE, LPIPS, and FIDlerp. The num-
ber of training images for FFHQ is 69K, and we limited the
test and validation set to 500 images.

Comparison with baselines. As shown in Table 1,
Image2StyleGAN reconstructs the image well, but it
struggles with poor interpolation quality. Low FIDlerp,
rugged interpolation results and lengthy runtime shows
Image2StyleGAN is not suitable for image editing tasks.
StyleMapGAN outperforms baselines in all metrics, and
even StyleMapGAN-Light shows astonishing results.

StyleMapGAN-Light is 2.5× smaller than the original
version. Stylemap resizer accounts for a large portion of
the network’s size, so we reduce the number of channels
of feature maps in the stylemap resizer. The reconstruc-
tion image lacks some detail, but StyleMapGAN-Light still
outperforms baselines, and FIDlerp is even better than the
original version. Please see our code to refer to the number
of channels.

Joint learning is important when training StyleMap-
GAN. It makes training stable and network performance
better. Training the encoder after training the generator

fails to reconstruct images. We speculate the reason why
joint learning is better than sequential learning as follows.
In joint learning, the generator and the encoder affect each
other. The generator generates an image that would be easy
to reconstruct by the encoder. The structure of the encoder
is a stack of convolutional layers, which makes the pro-
jected stylemap is prone to have local correspondence: Par-
tial change in the stylemap leads to local editing on the im-
age. Through joint learning, the mapping network in the
generator also learns to make the stylemap from Gaussian
distribution have the local correspondence.

C. Implementation details
Architecture. We follow StyleGAN2 [12] regarding the
discriminator architecture and the feature map counts in the
convolutional layers of the synthesis network. Our mapping
network is an MLP with eight fully connected layers fol-
lowed by a reshape layer. The channel sizes are 64, except
the last being 4,096. Our encoder adopts the discrimina-
tor architecture until the 8× 8 layer and without minibatch
discrimination [20].

Training. We jointly train the generator, the encoder, and
the discriminator. It is simpler and leads to more stable
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Original Reference AutoEncoder Conv MLP (Ours)

Figure 2: Local editing comparison across different mapping network architectures of StyleMapGAN. MLP-based architec-
ture provides more natural images compared to autoencoder-based and convolution-based architecture.

training and higher performance than separately training the
adversarial networks and the encoder, as described in §B.
For the rest, we mostly follow the settings of StyleGAN2,
e.g., the discriminator architecture, R1 regularization [17]
in the discriminator using γ = 10, Adam [13] optimizer
with 0.002 learning rate, β1 = 0.0 and β2 = 0.99, an ex-
ponential moving average of the generator and the encoder,
leaky ReLU [15], equalized learning rate [10] for all lay-
ers, random horizontal flip for augmentation, and reducing
the learning rate by two orders [11] of magnitude for the
mapping network. Our code is based on unofficial PyTorch
implementation of StyleGAN21. All StyleMapGAN vari-
ants at 256 × 256 are trained for two weeks on 5M images
with 2 Tesla V100 GPUs using a minibatch size of 16. In
§B, 1024× 1024 models are trained for one week on 2.5M
images with 8 Tesla V100 GPUs using a minibatch size of
16. We note that most cases keep slowly improving until
10M images. Our code is publicly available online for re-
producibility2.

Mapping network design for stylemap. There are sev-
eral choices when designing a mapping network. We can
remove the mapping network so that our method does not
generate images from the standard Gaussian distribution
and uses only real images for training like autoencoder [8].
As shown in Figure 2, autoencoder fails to produce realis-
tic images using the projected stylemap. It seems to copy
and paste between two images on RGB space. The autoen-
coder uses only images as input, which is a discrete vari-

1https://github.com/rosinality/stylegan2-pytorch
2https://github.com/naver-ai/StyleMapGAN

able. On the contrary, our method uses not only images
but also the latent from Gaussian distribution, which is a
continuous space. If we mix two latent codes for editing the
image, training with continuous latent space can cover more
latent values than discrete latent space.

Alternatively, we can easily think of convolutional layers
due to the spatial dimensions of the stylemap. But, the map-
ping network with convolutional layers struggles in recon-
struction so that the edited results images are quite different
from the original images. We assume that there is such a
limit because the convolutional layer’s mapping is bounded
to the local area. On the other hand, each weight and in-
put in MLP are fully-connected so that it can make a more
flexible latent space.

D. Loss details

In Section 3.2 of the main paper, we briefly introduced
six losses. In this section, we provide details of the losses
and their responsibilities. Some losses degrade reconstruc-
tion quality (MSE, LPIPS [26]), but we need every loss for
the best editing quality (FIDlerp). We can obtain the best
FIDlerp by training with all losses. Table 2 shows the quan-
titative results of the ablation study. The coefficients of all
loss terms are set to 1.

Adversarial loss. The discriminator tries to classify fake
images as fake, which are generated randomly from Gaus-
sian distribution or reconstruction of input images. On the
contrary, the generator fools the discriminator by produc-
ing more realistic images. Generation from the continuous
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All loss w/o Adversarial w/o Domain-guided

Figure 3: This figure shows the interpolation results of dif-
ferent networks. Leftmost images are results of a network
trained using whole losses. Second column images are gen-
erated by a network trained without random Gaussian noise,
which is similar to AutoEncoder. A network trained without
domain-guided loss generates rightmost column images.

Removed loss MSE LPIPS FID FIDlerp

Adversarial loss 0.009 0.137 278.87 12.99
Domain-guided loss 0.013 0.193 5.11 16.84
Latent reconstruction loss 0.021 0.220 4.43 10.08
Image reconstruction loss 0.029 0.254 5.01 10.29
Perceptual loss 0.033 0.304 5.34 13.33
R1 regularization 0.097 0.403 31.82 14.56

Train with all losses 0.023 0.237 4.72 9.97

Table 2: Loss ablation study removing one loss at a time.
We used CelebA-HQ, 256×256 image, and 8×8 stylemap.

space increases generation power in terms of smooth inter-
polation. Without adversarial loss related to the mapping
network, we can not obtain a smooth manifold of latent
space as mentioned in §C. Figure 3 also shows unnatural
interpolation results and checkerboard artifacts if we don’t
use adversarial loss. We use the non-saturating loss [7] as
our adversarial loss.

Domain-guided loss. Domain-guided loss is introduced
by In-DomainGAN [27]. We use an adversarial training
manner on fake images generated from real images via the
encoder and the generator. The discriminator tries to clas-
sify generated images as fake while the encoder and the gen-
erator attempt to fool the discriminator. The loss pushes
the projected latent code to remain in the original latent
space of GAN, which facilitates smooth real-image editing
by exploiting GAN’s properties (e.g., smooth interpolation).
Without domain-guided loss, interpolation results are blurry
as shown in Figure 3.

Latent reconstruction loss. The goal of the encoder is to
find the latent code which generates the target image. When
we generate a fake image from Gaussian distribution, we
know the pair of the latent code and the generated image.
Using that supervision, we train the encoder like other ap-
proaches [24, 23, 19, 27]. The encoder tries to project im-
ages in the semantic domain of the original latent space and
alleviates strong bias against pixel-level reconstruction.

Image reconstruction loss. To make the output image vi-
sually identical to the input image, we minimize differences
between them at pixel-level. If we do not use this loss func-
tion, visual reconstruction fails as ALAE [19] does.

Perceptual loss. Image reconstruction loss often makes
the encoder overfit and output blurry images. Several ap-
proaches [1, 2, 27] adopt perceptual loss [9], which exploits
the features extracted by VGG [22], for perceptual-level re-
construction. We use LPIPS [26] for perceptual loss, which
has better feature representation.

R1 regularization. R1 regularization [17] makes training
stable. We find that lazy regularization [12] is enough and
apply it every 16 steps for the discriminator. Without this
loss function, performance degrades in all metrics.

E. Additional results
In this section, we show extensive qualitative results.

§E.1 illustrates randomly generated images to show that
the generation capability of our method does not degener-
ate compared to the baseline. §E.2 and §E.3 provide ex-
panded comparison on reconstruction and local editing, re-
spectively. §E.4 shows additional unaligned transplantation
examples. Our method is applicable to other latent-based
editing methods as shown in §E.5 and §E.6. Lastly, we dis-
cuss the limitations (§E.7) of our method.

E.1. Random generation

The primary objective of GANs is generating high-
fidelity images from random Gaussian noise. We show ran-
dom generation results for each dataset: CelebA-HQ [10],
AFHQ [5], and LSUN Car & Church [25]. We use 8 × 8
resolution of stylemap except for AFHQ, in which case
16× 16 resolution provides much better generation quality
as shown in Table 2 of the main paper. To generate high-
quality images, we use the truncation trick [4, 14, 16] with
ψ = 0.7. Figure 4 shows uncurated images and FID values.
In CelebA-HQ and AFHQ, we use the same FID protocol as
in the main experiments; the number of generated samples
equal to that of training samples. On the other hand, LSUN
consists of a lot of training images so that we use 50k im-
ages randomly chosen from the training set; the number of
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generated samples is 50k, too. Low FIDs reveal that our
method has satisfactory generation capability.

E.2. Image projection & Interpolation

Although encoder-based methods project images into la-
tent space in real time, their projection quality falls short of
expectations. Figure 5 shows the projection quality compar-
ison between our method and other encoder-based baselines
(ALAE [19], In-DomainGAN [27], and SEAN [28]).

Figure 6 shows projection and interpolation results of
our method and Image2StyleGAN [1]. Although Im-
age2StyleGAN reconstructs the input images in high-
fidelity, it struggles in latent interpolation because its pro-
jection on w+ drifts from the learned latent space w of the
generator.

E.3. Local editing

Figure 7 shows local editing comparison with competi-
tors. We eject two competitors (Structured Noise [3] and
Editing in Style [6]) due to their poor results, as shown in
Figure 4 of the main paper. It is because they do not target
editing real images but target fake images.

E.4. Unaligned transplantation

Figure 8 and 9 show unaligned transplantation results in
LSUN Car & Church [25]. Our method can transplant the
arbitrary number and location of areas in reference images
to the original images. Note that our method adjusts the
color tone and structure of the same reference regarding the
original images.

E.5. Semantic manipulation

We exploit InterFaceGAN [21] to find the semantic
boundary in the latent space. Our method can change the
semantic attribute using a certain direction derived from the
boundary. We apply the direction on stylemap (w space).
Figure 10 shows two versions of semantic manipulation.
The global version is a typical way to manipulate attributes.
The local version is only available in our method due to
the spatial dimensions of the stylemap. We apply the se-
mantic direction on the specified location in the w space.
It allows us not to change the undesired area of the origi-
nal image regardless of attribute correlation. For example,
“Rosy Cheeks” makes lips red and “Goatee” changes the
color of noses in the global version but not in the local ver-
sion as shown in Figure 10. Furthermore, we can change
part of attributes such as lip makeup from “Heavy Makeup”
and beard from “Goatee”. It alleviates the hard labor of
highly granular labeling. Swap Autoencoder [18] shows re-
gion editing that the structure code also can be manipulated
locally. However, it can not apply region editing on some

attributes (e.g., “Pale Skin”) which are related to color and
textures due to the absence of spatial dimensions in the tex-
ture code.

E.6. Style mixing

StyleGAN [11] proposed the style mixing method,
which copies a specified subset of styles from the reference
image. We operate style mixing in resized stylemaps (w+).
Unlike StyleGAN, our generator has color and texture infor-
mation in the resized stylemaps of low resolution (8×8). On
the other hand, it generates overall structure through other
resolutions (162 − 2562). If we want to bring the color and
texture styles from the reference image, we replace 8 × 8
resized stylemaps by reference. Figure 11 shows the exam-
ples.

Using style mixing and unaligned transplantation, we
can transfer local structure only as shown in Figure 12. We
use the original image on the first resized stylemap and the
reference image for the remaining resolutions in the target
region.

E.7. Failure cases

Our method has a limitation when original and reference
images have different poses and target semantic sizes. Fig-
ure 13 shows failure cases on different poses. Especially,
hair is not interpolated smoothly. Figure 14 shows failure
cases on different target semantic sizes. The sizes and poses
of the bumper vary, and our method can not transplant it
naturally. This limitation gets worse when the resolution of
the stylemap increases. Resolving this problem would be
interesting future work.
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CelebA-HQ, FID: 4.92 AFHQ, FID: 6.71

LSUN Car, FID: 4.15 LSUN Church, FID: 2.95

Figure 4: Uncurated random generation results in four datasets.
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Original ALAE In-DomainGAN SEAN Ours

Figure 5: Reconstruction results in encoder-based methods. ALAE [19] does not preserve identities in the original images.
In-DomainGAN [27] has better reconstruction results than ALAE, but it sometimes fails to generate human-like images
as shown in the second-last row. Note that In-DomainGAN requires additional optimization steps which take seconds.
SEAN [28] fails to preserve the shape of original images (e.g., background, hair curl, and cloth). Our method reconstructs
images well not only the color and texture but also the shape.
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Figure 6: Comparison with Image2StyleGAN for interpolation quality. Image2StyleGAN shows rugged and discontinuous
interpolations, even though the reconstruction quality is visually good. Our method produces clearer and smoother inter-
polations, which reveal our superiority in both pixel-level and semantic-level (i.e., the semantics the original latent space)
reconstruction. Note that the reconstruction speed of our method is 2000× faster than Image2StyleGAN.
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Original Reference In-DomainGAN SEAN Ours

Figure 7: Local editing comparison in CelebA-HQ. Each row edits hair, eyes, nose, cloth, and background. In-
DomainGAN [27] only optimizes region in the target mask and it changes identities of the original images. SEAN [28]
tends to bring only the color and the texture of reference images, not the shape (especially on hair lines). Our method reflects
the shape of the reference image as well and preserves the identity of the original image.
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Figure 8: Transplantation results of our method in LSUN Car. We transplant the cabin, wheel, and bumper.
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Figure 9: Transplanting tower, gate and windows in LSUN Church by our method. Our method can transplant the arbitrary
number and location of areas in reference images to the original images. Note that our method adjusts color tone and structure
of the same references regarding the original images.
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Figure 10: The results of the global and local version of semantic manipulation in our method. In local manipulation, we
apply the semantic direction in the yellow box area.

13



Original

R
ef

er
en

ce

S
tr

u
ct

u
re

 f
ro

m
 r

ef
er

en
ce

C
o

lo
r 

fr
o

m
 r

ef
er

en
ce

Figure 11: The results of style mixing in our method. Please refer to E.6 for details.
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Original Reference Mask Copy All Copy shape

Figure 12: 4th column shows the transplantation of all identity including shape, texture, and color. The rightmost image
shows the transplantation of structure alone.
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Figure 13: Failure cases of interpolation in our method due to extreme pose difference.
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Figure 14: Failure cases of transplantation in our method due to different sizes of the masks.
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