
Supplementary Materials for
“IronMask: Modular Architecture for Protecting Deep Face Template”

Sunpill Kim1 Yunseong Jeong2 Jinsu Kim3 Jungkon Kim3 Hyung Tae Lee2 Jae Hong Seo1*

1Department of Mathematics & Research Institute for Natural Sciences, Hanyang University
2Division of Computer Science and Engineering, College of Engineering, Jeonbuk National University

3Security Team, Samsung Research, Samsung Electronics

A. Template Attack against ArcFace

A template attack is one of the severest attacks against
biometric recognition systems [2, 4, 3, 1, 5]. In particular,
attacks using deep neural network successfully recover an
analog of the original facial image from its template of tar-
get recognition systems. The neighborly de-convolutional
neural network (NbNet) is a deep neural network based tem-
plate attack that successfully shows vulnerability of a deep
face recognition, Facenet in [5]. It achieves over 95.2% TAR
at 0.1% FAR on the LFW dataset. The original NbNet was
designed for the neural network architecture of Facenet us-
ing the triplet-loss function. We adjust and adapt it to the
neural network architecture of ArcFace using additive an-
gular margin loss and obtain a superior result than that ap-
plied to Facenet in [5]. This result implies that templates of
ArcFace are more exposed to threats than those of FaceNet.

The NbNet consists of 6 neighborly de-convolution
blocks (NbBlock), similar to Densenet, and 1 convolution
operation. It uses two different loss functions. One of them
is a pixel-wise loss function and the other is the L2-norm of
difference between the outputs of feature mapping function.
They empirically determined the second activation function
of the third layer as the mapping function.

In order to adapt the NbNet to ArcFace, we reduce the
size of one NbBlock and change the perceptual loss to the
angular distance between the outputs of ArcFace model.
Since the Arface model uses a small variation of margin
loss for intra-class and a large variation of margin loss for
inter-class, ArcFace uses larger threshold than Facenet. Un-
der this setting, we experiment the vulnerability of ArcFace
against template attack and obtain the results in Table 3. Ac-
cording to our experimental results, at FAR of 0.1%, TAR
of templates generated by the NbNet for ArcFace is about
2.5% higher than that for Facenet. It is evident that the more
advanced face recognition may cause severer threats to user

*Corresponding author: J. H. Seo (e-mail: jaehongseo@hanyang.ac.kr)

privacy.

FAR 0.0001% 0.1% 1.0%

Facenet NA 95.20% 98.63%
ArcFace 81.5% 97.74% NA

Table 3: TARs for attacks against Facenet and ArcFact at
three different FARs.

B. Theoretical Complements for ECC
In this section, we provide proofs of propositions that

were missing in the main body of this paper due to the space
constraints.

Proposition 1. Let Cα be the set of codewords defined in
Definition 1.

1. The minimum angular distance between any two dis-
tinct codewords in Cα is cos−1(1− 1

α).

2. The output of the USample algorithm is uniformly dis-
tributed over Cα.

3. For any u ∈ Sn−1, the output c of the Decode algo-
rithm satisfies the following inequality:

〈c,u〉 ≥ 〈c′,u〉 for all c′ ∈ Cα.

4. The number of all codewords in Cα is
(
n
α

)
· 2α.

Proof. By Definition 1, the fourth statement is straightfor-
ward. Now, we prove the other three statements.

1. It is sufficient to show that the maximum inner product
value is 1 − 1

α since the cosine function is decreasing
between 0 and π. By Definition 1, each codeword in Cα
has exactly α non-zero elements with the same abso-
lute value 1√

α
. Thus, it is obvious that two codewords

sharing α − 1 non-zero positions with the same sign

1

for each entry have the maximum inner product value
α−1
α = 1− 1

α .

2. It is sufficient to show that for each c ∈ Cα, the
USample algorithm returns c with the probability
1/|Cα|. At Step 1 of the USample algorithm in Algo-
rithm 4, the same positions for non-zero elements as
those of c are selected with the probability 1

(nα)
. At Step

2 of the USample algorithm, the same sign as those of
c are selected with the probability 1

2α . Both steps are
independent and so the probability that the Usample
algorithm returns c is 1

2α·(nα)
, which is equal to 1

|Cα| by

the fourth statement.

3. Let u = (u1, ..., un) be an element in Sn−1 and c be
the output of the Decode algorithm with input u. Let
J = {j1, . . . , jα} be the set of indices that c has non-
zero entries. Then, from the description of the Decode
algorithm, we have

〈u, c〉 = uj1 ·
uj1

|uj1 |
√
α
+ · · ·+ ujα ·

ujα
|ujα |

√
α

=
1√
α

(
|uj1 |+ · · ·+ |ujα |

)
=

∑α
k=1 |ujk |√

α
.

Similarly, for any other codeword c′ 6= c, the value
〈u, c′〉 is equal to the same sum with J ′ where J ′ is
the set of indices that c′ has non-zero entries. Thus, the
inequality |uj | ≥ |uk| for ∀j ∈ J,∀k ∈ [1, n]\J given
in the description of the Decode algorithm guarantees
that 〈u, c〉 ≥ 〈u, c′〉 for all c′ ∈ Cα if J ′ is distinct
from J . �

Proposition 2. Given two unit vectors t and c, let w =

c − tT ct and Rθ =

[
cos θ − sin θ
sin θ cos θ

]
where θ =

cos−1(〈t, c〉). Then, the following matrix R is an orthog-
onal matrix such that Rt = c:

R = I− ttT −wwT︸ ︷︷ ︸
projection part

+ [t w]Rθ[t w]T︸ ︷︷ ︸
rotation part

where I is the n× n identity matrix.

Proof. Since

RRT =
(
I− ttT −wwT

) (
I− ttT −wwT

)T
+
(
I− ttT −wwT

) (
[t w]Rθ[t w]T

)T
+
(
[t w]Rθ[t w]T

) (
I− ttT −wwT

)T
+[t w]Rθ[t w]T

(
[t w]Rθ[t w]T

)T
= I

from the following relations,(
I− ttT −wwT

) (
I− ttT −wwT

)T
= I− ttT −wwT ,

[t w]Rθ[t w]T
(
[t w]Rθ[t w]T

)T
= ttT +wwT ,(

I− ttT −wwT
) (

[t w]Rθ[t w]T
)T

= 0, and

R is an orthogonal matrix. Furthermore, since t and w are
orthonormal, we can represent c as c = 〈c, t〉t+〈c,w〉w =
t cos θ +w sin θ = c. So, we also have

Rt =
(
I− ttT −wwT + [t w]Rθ[t w]T

)
t

= t cos θ +w sin θ = c.

Therefore, R is an orthogonal matrix such that Rt = c. �

C. Obstacles for Solving Equation (1) using a
TMTO Strategy

In this section, we explain how to apply a time-memory-
trade-off (TMTO) strategy to solve Equation (1) and intro-
duce obstacles that are occurred in the process. To help the
readers’ understanding, we first consider the exact version
of Equation (1) that has no error part. That is, we try to find
two codewords (c1, c2) in Cα such that

Pc1 = c2 (2)

for given an orthogonal matrix P. For simplicity, we assume
that α is even, but it is naturally extended to the case that α
is odd.

Let pi be the i-th column of P. Then, we can re-write
Equation (2) as

c11p1 + c12p2 + · · ·+ c1npn = c2 (3)

where c1 = (c11, c12, · · · , c1n).
By using the fact that c1 has the exact α non-zero ele-

ments whose absolute values are the same as 1√
α

, we can
set two vectors of length n, a and b, such that they have
the exact α/2 non-zero components whose absolute values

are the same as
1√
α

, and there is no location that both a

and b have the non-zero components. Then, Equation (3) is
equivalent to∑

a=(a1,··· ,an)

aipi +
∑

b=(b1,··· ,bn)

bjpj = c2 (4)

for some a and b, both of which are determined by c1. The
goal of our TMTO attack is to reduce the searching space
of c1 at the cost of about square-root size memory and the
above equation gives a hint for our purpose. We observe
that two terms

∑
a=(a1,··· ,an) aipi and

∑
b=(b1,··· ,bn) bjpj

in the left hand side of Equation (4) share the same struc-
ture and c2 in the right hand side is of the special form

2

(e.g., sparse vector consisting of only 0 and ± 1√
α

). When
we compute

∑
d=(d1,··· ,dn) dipi for all possible vectors

d having the exact α/2 non-zero components whose ab-

solute values are
1√
α

and store them at a table T , both∑
a=(a1,··· ,an) aipi and

∑
b=(b1,··· ,bn) bjpj are elements

in T . Then, due to the special form of c2, Equation (4)
helps us to efficiently search both

∑
a=(a1,··· ,an) aipi and∑

b=(b1,··· ,bn) bjpj , not a sequential-manner but at the
same time from the table T , which is roughly of square-root
size.

We provide a precise description of our TMTO attack
algorithm with detailed analysis.

1. Generate a table T that stores all possible pairs of vec-
tor a and the corresponding vector qi =

∑
a aipi

where a is a vector of length n that has the exact
α/2 non-zero components and their absolute values
are 1√

α
. (Note that all possible candidates for

∑
a aipi

are exactly the same as those for
∑

b bjpj . So, we can
use the same table.)

2. From the table T , generate a sub-table Ti which stores
pairs of vector a and the i-th component of the corre-
sponding vector qi for 1 ≤ i ≤ `. Then, sort tables
Ti’s each.

3. For each qi stored at T , search a table Ti to find ele-
ments such that the sum of the i-th component of qi
and the value stored at T is 0, 1√

α
, or − 1√

α
. If the

condition holds, we collect the corresponding (a,b)
where a is the vector corresponding to qi in T and b
is the vector corresponding to the i-th component in
Ti. Run this step for tables T1, · · · , T`.

4. For all pairs of vectors (a,b) such that they satisfy the
condition in Step 3 for all tables Ti’s and there is no
location that both a and b have non-zero components,
check whether∑

a=(a1,a2,··· ,an)

aipi +
∑

b=(b1,b2,··· ,bn)

bjpj

is a codeword in Cα or not. If it is a codeword, return
c1 = a+ b and c2 =

∑
a aipi +

∑
b bjpj .

Now, we calculate the complexity of the above algo-
rithm. Let N be the number of elements stored at T . Then,
N =

(
n
α/2

)
2α/2. Step 1 takes N additions of α/2 n-

dimensional vectors. Step 2 and Step 3 take O(`N logN)
and O(` logN) comparisons, respectively. Finally, Step 4
takes c additions of α n-dimensional vectors where c is the
number of pairs that satisfy the conditions stated in Step 4.
Therefore, if ` and c is sufficiently small, e.g., both are log-
arithmic in N , then the above algorithm takes a quasi-linear
time in N .

One may try to check Equation (4) with all candidates
after Step 1. We remark that there is no efficient way to exe-
cute it since c2 is also hidden. That is, the key idea to reduce
the complexity of solving by using our method is Steps 2
and 3 which exploits the fact that c2 is of the special form
that has the exact α non-zero elements and their absolute
values are the same.

Next, we move our attention to solving Equation (1),
which can be regarded as the erroneous version of Equa-
tion (2). Similarly to the above, we may apply to the TMTO
strategy by mitigating the condition at Step 3 so that it col-
lects the vectors such that the result sum is in some range,
not one of the exact values 0, 1√

α
and − 1√

α
, to reflect the

errors generated by P2e in Equation (1). However, in this
case, there are still remained many (a,b)’s after Step 3, that
is, c is too large in the analysis of the above algorithm. So,
we cannot reduce the complexity of the algorithm as we ex-
pect.

D. Discussions
D.1. Matching Score

The verification of IronMask outputs only the binary
score, ‘match’/‘no match’. We would like to note that most
biometric cryptographic schemes, which do not use cryp-
tographic encryption schemes, employ cryptographic hash
functions. Thus, their verification processes output the bi-
nary score as ours.

Nevertheless, one can indirectly control a threshold for
TAR-FAR rate by adjusting parameters of the underlying
face recognition system. There is a more direct method for
handling this issue by loosening requirements in the match-
ing process: In the registration, a user stores several hashed
codewords in close proximity to each other, unlike stor-
ing one hashed codeword only in the current registration.
Thereafter, in the verification, we may use a modified de-
coding algorithm that outputs a set of close codewords, in-
stead of only the closest codeword, and check their hashed
values with stored ones. From these relaxations, one can
control a threshold since those enable to check more ap-
proximate matches. Although this direct solution is a plau-
sible candidate, more plentiful analyses and experiments are
necessary for resolving this issue completely. We leave a de-
tailed analysis as further study.

D.2. CosFace Experimental Phenomenon

The performance degradation of CosFace with IronMask
is considerable compared to the ArcFace case. (See ‘CF+I’
row in Table 1.) Let us present our interpretation for this
experimental phenomenon. First, we note that we used hy-
perparameters of ArcFace and CosFace, which were set
to get the best performance only, regardless of IronMask.
In fact, in order to understand this phenomenon by our-

3

selves, we have evaluated the average cosine values for
the same person for both ArcFace and CosFace. As a re-
sult, we found that the cosine value of ArcFace is higher
than that of CosFace: For example, the average cosine val-
ues in ArcFace and CosFace for CMU-MultiPIE dataset
are 0.89 and 0.80, respectively. We have inferred that Iron-
Mask’s decoding process relatively well harmonizes with
recognition systems with smaller intra-class variation and
its boundary lies somewhere between 0.80 and 0.89. This
causes considerable performance degradation for the Cos-
Face case. To complement this effect, we devise a new cen-
tering method using multiple images. In CosFace (and Arc-
Face), each template is considered as a vector in Sn−1 with
cosine similarity distance and thus simple averaging with
the Euclidean distance cannot generate a meaningful center.
To overcome this obstacle, we exploited the multiple linear
regression to find a center and it improves the intra-class
variation: For example, we confirm by experiments that the
cosine value of CosFace in the above setting increases from
0.80 to 0.87. Moreover, as results shown in Table 1, Iron-
Mask is well harmonized with both CosFace and ArcFace
for several datasets with our new centering method.

References
[1] Kai Cao and Anil K Jain. Learning fingerprint reconstruction:

From minutiae to image. IEEE Transactions on information
forensics and security, 10(1):104–117, 2015. 1

[2] R Cappelli, A Lumini, D Maio, and D Maltoni. Fingerprint
image reconstruction from standard templates. In IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol-
ume 29, pages 1489–1503. arXiv preprint, 2007. 1

[3] M Fredrikson, S Jha, and T Ristenpart. Model inversion at-
tacks that exploit confidence information ad basic counter-
measures. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, pages
1322–1333, 2015. 1

[4] Javier Galbally, Arun Ross, Marta Gomez-Barrero, Julian
Fierrez, and Javier Ortega-Garcia. Iris image reconstruction
from binary templates: An efficient probabilistic approach
based on genetic algorithms. Computer Vision and Image Un-
derstanding, 117(10):1512–1525, 2013. 1

[5] Guangcan Mai, Kai Cao, Pong C Yuen, and Anil K Jain. On
the reconstruction of face images from deep face templates.
IEEE transactions on pattern analysis and machine intelli-
gence, 41(5):1188–1202, 2018. 1

4

