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(a) Estimated degradation kernels at different (b) Visualization of the cosine similarity of the estimated
spatial locations of the low resolution image. per-pixel degradation kernels and the ground truth kernel.

Figure 1: Degradation kernel visualization on different spatial locations of the same image. In this example, the penguin is the
object in focus and the background is blurry (out of focus). The estimated degradation kernels differ depending on the spatial
location as shown in (a). The cosine similarity of each per-pixel kernel is visualized in (b). Accurate degradation kernels are
estimated near the focused region, especially in the boundary areas between the in-focus and out-of-focus areas.

1. Additional Kernel Analyses

1.1. Spatially-variant Kernel Visualizations

Photography enthusiasts tend to take pictures with inten-
tionally blurry (out-of-focus) areas, in order to emphasize
objects or regions of interest in the depth-of-field (DoF) by
controlling the aperture size or the focal length of the camera
lens to focus on the areas of interest. In the main paper, we
showed that existing blind super-resolution (SR) methods
tend to generate over-sharpened or blurry results for these
types of artistic images (Fig. 1 in main paper). We further
showed that a vanilla SR network that does not consider the
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degradation information over-sharpens even the intention-
ally out-of-focus area, resulting in images with a deeper DoF
(Fig. 5 in main paper). The over-sharpening tends to happen
in the boundary regions between in-focus and completely
out-of-focus areas. This is an important observation that was
not previously dealt with in literature, which can be useful
in handling images with intentionally blurry regions.

To further analyze this aspect, we show the spatially-
variant kernel estimations in an image mixed with in-focus
and out-of-focus areas in Fig. 1. In 1 (a), the estimated degra-
dation kernel in the green box, which is the in-focus area
where the high frequency details must be restored, is highly
similar to the ground truth degradation kernel. Comparing
the red box and blue box in the smooth area, more accurate
kernels are predicted in the region closer to the penguin (blue
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(a) Comparison of estimated degradation kernels on DIV2K-val
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(b) Comparison of estimated degradation kernels on DIV2KRK[1]

Figure 2: Visualizations of ground truth kernels and estimated degradation kernels by KernelGAN[1], BlindSR[2] and Ours on
two datasets, (a) DIV2K-val and (b) DIV2KRK [1]. The downsampling network of our KOALAnet is able to predict accurate
degradation kernels on DIV2KRK as well as DIV2K-val.

box). In Fig. 1 (b), we have visualized the cosine similarity
map between the vectorized predicted per-pixel kernels and
the ground truth blur kernel (red denotes high similarity and
blue denotes low similarity). It can be clearly seen that the
predicted degradation kernels are indeed spatially-variant
depending on the location in the image. Also, thanks to the
large receptive field of our U-Net-based downsampling net-
work, accurate blur kernels are predicted even in the smooth
regions near the in-focus area (Fig. 1 (b)). This helps to
effectively handle the boundary areas between in-focus and
completely out-of-focus areas so that these regions are not
over-sharpened after SR. Note that conventional SR meth-
ods are unable to disentangle the degradation blur and the
intended blur, and thus generates over-sharpened results in

boundary regions (Fig. 1 in main paper).

1.2. Comparison of Estimated Degradation Kernels

Details on the kernel accuracy measurement. In Ta-
ble 4 of the main paper, we compared the estimation ac-
curacy of the degradation kernels generated by Kernel-
GAN [1], BlindSR [2] and the downsampling network of
our KOALAnet on the DIV2K-val testset with random
anisotropic Gaussian degradations, and DIV2KRK [1]. For
each method, the degradation kernels were estimated from
the input LR images degraded via the corresponding ground
truth kernels. BlindSR[2] predicts three values, standard
deviations σ11 and σ22 and the rotation angle θ, of a bivari-
ate Gaussian distribution to parametrize a Gaussian kernel.



Since the peak of the estimated Gaussian kernel is located
at the center pixel due to the size of the kernel (15× 15) be-
ing an odd number in the original implementation provided
by the authors of BlindSR [2], we calibrated the estimated
kernels by convolving them with a 2 × 2 mean filter with
0.25 values. This yielded lower l2 error. Furthermore, since
the center of the ground truth kernels, kgt, and the estimated
kernels, k, can be different, we shifted k and kgt in x and y
directions to find the minimum l2 error, as follows:

l2 error = min
∆h,∆w

∑
h,w

‖kgt(h,w)− k(h+∆h,w+∆w)‖2,

(1)

where h,w represent the locations in x, y dimensions and
∆h,∆w is the shift along the x,y dimensions.

Visualization of the estimated kernels. For the qualita-
tive comparison of the estimated kernels, we visualized some
examples of the ground truth kernels and the estimated ker-
nels by KernelGAN [1], BlindSR [2] and the downsampling
network of our KOALAnet on the DIV2K-val testset and
DIV2KRK [1] in Fig. 2. As shown, our KOALAnet robustly
estimates the latent degradation kernels from the LR images
compared to other methods, even in DIV2KRK [1] where
noise is injected to the Gaussian kernels.

2. Details of Complexity Evaluation
2.1. KOALAnet

Our proposed framework is implemented on Python 3.6
with Tensorflow 1.13, and we used an NVIDIA Titan RTX
for our experiments. The total number of filter parameters is
6.09M and 6.45M for the KOALAnet of s = 2 and s = 4,
respectively.

2.2. Comparison to Existing Methods

We provided a comparison on computational complexity
in terms of the inference time and GFLOPs with other blind
SR methods [1, 2, 3, 4] in Table 1 of the main paper. For all
methods, GFLOPs is calculated only for the feed-forward
paths. Furthermore, since ZSSR [4], KernelGAN [1] and
BlindSR [2] are optimization-based methods, we take the
number of iterations into consideration when computing the
GFLOPs. The number of iterations needed for the optimiza-
tion of ZSSR [4] can be different at each run even on the
same test image (e.g., “baby” in Set5), while the numbers
of iterations of KernelGAN [1] and BlindSR [2] are fixed.
Thus for ZSSR, we obtained the average number of iterations
from five repetitions each for scale factors 2 and 4, and then
computed the GFLOPs using those numbers.

3. Additional Qualitative Results
We provide additional qualitative results on the random

anisotropic Gaussian testsets in Fig. 3 and 4 for scale factor

2, and Fig. 5 and Fig. 6 for scale factor 4. The estimated
degradation kernels are shown at the bottom right or the
bottom left corner for all applicable methods that estimate
the degradation kernel. Since IKC [3] estimates the degra-
dation kernels in a lower dimensionality (after PCA), they
cannot be visualized along with the other degradation ker-
nels estimated from BlindSR [2], KernelGAN [1] or Ours,
from which actual degradation kernels can be generated.
The ground truth degradation kernels are also shown at the
bottom right or the bottom left corner of images or patches
denoted as Ground Truth. In Fig. 3 and Fig. 5, we show
full images for comparisons on Set5, Set14 and BSD100,
which have relatively low resolutions. In Fig. 4 and Fig.
6, we crop the SR results to better visualize the difference
for the readers for comparisons on DIV2K, Urban100 and
Manga109, which have higher resolutions of near 2K. For
IKC [3], we visualized the results yielding the best PSNR
performance among seven iterations (IKC-max). As shown,
our KOALAnet produces accurate SR results with sharper
edges and realistic textures on various datasets and degra-
dation kernels, even in examples with very high frequency
regions.
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Figure 3: Additional qualitative comparison with ZSSR [4], ZSSR+KernelGAN [1] and BlindSR [2] for scale factor 2 on Set5,
Set14 and BSD100 datasets. The estimated (or ground truth) degradation kernels are placed on the bottom right corner for all
applicable methods that estimate the degradation kernel. Our KOALAnet is able to predict accurate degradation kernels and
generate sharp SR results on various datasets and degradation kernels.
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Figure 4: Additional qualitative comparison with ZSSR [4], ZSSR+KernelGAN [1] and BlindSR [2] for scale factor 2 on
DIV2K, Urban100 and Manga109 datasets. The estimated (or ground truth) degradation kernels are placed on the bottom left
corner for all applicable methods that estimate kernel information. Our KOALAnet is able to predict accurate degradation
kernels and generate sharp SR results on various datasets and degradation kernels.
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Figure 5: Additional qualitative comparison with ZSSR [4], ZSSR+KernelGAN [1] and IKC [3] for scale factor 4 on Set5,
Set14 and BSD100 datasets. The estimated (or ground truth) degradation kernels are placed on the bottom left corner for all
applicable methods that estimate the degradation kernel. We show the results yielding the best PSNR among seven iterations
for IKC. Our KOALAnet is able to predict accurate degradation kernels and generate sharp SR results on various datasets and
degradation kernels.
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Figure 6: Additional qualitative comparison with ZSSR [4], ZSSR+KernelGAN [1] and IKC [3] for scale factor 4 on DIV2K,
Urban100 and Manga109 datasets. The estimated (or ground truth) degradation kernels are placed on the bottom left corner
for all applicable methods that estimate the degradation kernel. We show the results yielding the best PSNR among seven
iterations for IKC. Our KOALAnet is able to predict accurate degradation kernels and generate sharp SR results on various
datasets and degradation kernels.


