A. Implementation details

In this section, we discuss detailed derivations and de-
scriptions of SetVAE presented in Section 3 and Section 4.

A.1. KL Divergence of Initial Set Distribution

This section provides proof that the KL divergence be-
tween the approximate posterior and the prior of the initial
elements in Eq. (10) and (13) is a constant.

Following the definition in Eq. (8) and Eq. (9), we de-
compose the prior as p(z(?)) = p(n)p(z(®)|n) and the ap-
proximate posterior as ¢(z(?|x) = 6(n)q(z(? |n, x), where
d(n) is defined as a delta function centered at n = |x|. Here,
the conditionals are given by

p(zln) = Hp ) (26)

H & 27)

q(z9n,x)

As described in the main text, we set the elementwise dis-
tributions identical, p(zl(-o)) = q(z50)|x). This renders the
conditionals equal,

p(z V) = ¢(2©|n, x). (28)

Then, the KL divergence between the approximate posterior
and the prior in Eq. (10) is written as

KL(q(z |x)[[p(z?))
= KL((S(n)q(z(O) n, x)Hp(n)p(z(O) In)) (29)
= KL(3(n)p(z” n)[[p(n)p(z'V|n)), (30)

where the second equality comes from the Eq. (28). From
the definition of KL divergence, we can rewrite Eq. (30) as

KL(q(z?x)||p(2?))

_ 3(n)p(zV[n)

= ]Eé(n)p(z(m |n) [log p(n)p%z(o)ln)} (31)
_ 4(n)

- E5(n)p(z(0) In) |:10g p(n):| ) (32)

As the logarithm in Eq. (32) does not depend on z(?), we can
take it out from the expectation over p(z(?)|n) as follows:

KL(q(z[x)[[p(z™*))

6
=Esn) |:]Ep(z(0)|n) [bg pEZ%” (33)
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which can be rewritten as

Es(n)[log 6(n) — log p(n)]. (33)
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Figure 11: The detailed structure of Attentive Bottleneck
Layer during sampling (for generation) and inference (for
reconstruction).

The expectation over the delta function 6(n) is simply an
evaluation at n = |x|. As ¢ is defined over a discrete ran-
dom variable n, its probability mass at the center |x| equals
1. Therefore, log 6(n) at n = |x| reduces to log 1 = 0, and
we obtain

KL(q(z|x)|[p(z"")) =

As discussed in the main text, we model p(n) using the em-
pirical distribution of data cardinality. Thus, p(|x|) only
depends on data distribution, and —KL(q(z?|x)||p(z(?))
in Eq. (10) can be omitted from optimization.

—logp(x]).  (36)

A.2. Implementation of SetVAE

Attentive Bottleneck Layer. In Figure 11, we provide the
detailed structure of Attentive Bottleneck Layer (ABL) that
composes the top-down generator of SetVAE (Section 4).
We share the parameters in ABL for generation and infer-
ence, which is known to be effective in stabilizing the train-
ing of hierarchical VAE [14, 26].

During generation (Figure 1la), z is sampled from
a Gaussian prior A (u, o) (Eq. (19)). To predict 1 and
o from h, we use an elementwise fully-connected (FC)
layer, of which parameters are shared across elements of
h. During inference, we sample the latent variables from
the approximate posterior N (1 + Ap,0 - Ac), where
the correction factors Ay, Ac are predicted from the
bottom-up encoding he,. by an additional FC layer. Note
that the FC for predicting u, o is shared for generation and
inference, but the FC that predicts Au, Ao is used only for
inference.



Slot Attention in ISAB and ABL. SetVAE discovers
subset representation via projection attention in ISAB
(Eq. (6)) and ABL (Eq. (18)). However, with a basic atten-
tion mechanism, the projection attention may ignore some
parts of input by simply not attending to them. To prevent
this, in both ISAB and ABL, we change the projection at-
tention to Slot Attention [21].

Specifically, plain projection attention* (Eq. (4)) treats
input x € R™*? as key (K) and value (V), and uses a set
of inducing points I € R™*? as query (Q). First, it obtains
the attention score matrix as follows:

_ QKT
~Vd

Each row index of A denotes an inducing point, and each
column index denotes an input element. Then, the value set
V is aggregated using A. With Softmax,s—q(-) denoting
softmax normalization along d-th axis, the plain attention
normalizes each row of A, as follows:

A € R™x", (37)

Att(Q, K, V) =WV € R™*4, (38)
where W = Softmax,yjs—2(A4) € R™*"™. (39)

As a result, an input element can get zero attention if every
query suppresses it. To prevent this, Slot Attention normal-
izes each column of A and computes weighted mean:

SIotAt(Q, K, V) = W'V, (40)
Al
where W, = ﬂ for A’ = Softmaxyis—1(A).
(41)

As attention coefficients across a row sum up to 1 after soft-
max, slot attention guarantees that an input element is not
ignored by every inducing point.

With the adaptation of Slot Attention, we observe that
inducing points often attend to distinct subsets of the input
to produce h, as illustrated in the Figure 7 and Figure § of
the main text. This is similar to the observation of [21] that
the competition across queries encouraged segmented rep-
resentations (slots) of objects from a multi-object image. A
difference is that unlike in [21] where the queries are noise
vectors, we design the query set as a learnable parameter
I. Also, we do not introduce any refinement steps to the
projected set h to avoid the complication of the model.

B. Experiment Details

This section discusses the detailed descriptions and addi-
tional results of experiments in Section 6 in the main paper.

4For simplicity, we explain with single-head attention instead of
MultiHead.

B.1. ShapeNet Evaluation Metrics

We provide descriptions of evaluation metrics used in the
ShapeNet experiment (Section 6 in the main paper). We
measure standard metrics including coverage (COV), min-
imum matching distance (MMD), and 1-nearest neighbor
accuracy (1-NNA) [1, 30]. Following recent literature [ 3],
we omit Jensen-Shannon Divergence (JSD) [1] because it
does not assess the fidelity of each point cloud. To measure
the similarity D(x,y) between point clouds x and y, we
use Chamfer Distance (CD) (Eq. (24)) and Earth Mover’s
Distance (EMD), where the EMD is defined as:

EMD(x,y) =min ) |Ixi = yrlz.  (42)

Let S, be the set of generated point clouds and S, be the
set of reference point clouds with |S,.| = |S,|.

Coverage (COV) measures the percentage of reference
point clouds that is a nearest neighbor of at least one gener-
ated point cloud, computed as follows:

covs,. s,y — Emines Dosy)x e s o
|5, ]

Minimum Matching Distance (MMD) measures the aver-
age distance from each reference point cloud to its nearest
neighbor in the generated point clouds:

MMD(S, S,) = myes )I(IEIISI'}] D(x,y). (44)

1-Nearest Neighbor Accuracy (1-NNA) assesses whether
two distributions are identical. Let S_x = S, U Sy — {x}
and Ny be the nearest neighbor of x in S_x. With 1(-) an
indicator function:

1-NNA(S,, S,)

s, Mk € 5,) + Yyes, LNy €5,)
EARSE |

(45)
B.2. Hierarchical Disentanglement

This section describes an evaluation protocol used in
Figure 9 in the main paper. To investigate the latent rep-
resentations learned at each level, we employed Linear
Discriminant Analysis (LDA) as simple layer-wise classi-
fiers. The classifiers take the latent variable at each layer
z!, VI € [1, L] as an input, and predict the identity and po-
sition of two digits (in 4 x 4 quantized grid) respectively in
Set-MultiMNIST dataset. To this end, we first train the Set-
VAE in the training set of Set-MultiMNIST. Then we train
the LDA classifiers using the validation dataset, where the
input latent variables are sampled from the posterior distri-
bution of SetVAE (Eq. (12)). We report the training accu-
racy of the classifiers at each layer in Figure 9.
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Figure 12: Structure of Vanilla SetVAE without hierarchical
priors and subset reasoning in generator.

B.3. Ablation study

In this section, we provide details of the ablation study
presented in Table 3 of the main text.

Baseline As baselines, we use a SetVAE with unimodal
Gaussian prior over the initial set elements, and a non-
hierarchical, Vanilla SetVAE presented in Section 3.

To implement a SetVAE with unimodal prior, we only
change the initial element distribution p(zgo)) from MoG
(Eq. (21)) to a multivariate Gaussian with a diagonal co-
variance matrix A'(1(%), 5(*)) with learnable ;(*) and o(?).
This approach is adopted in several previous works in
permutation-equivariant set generation [30, 16, 21].

To implement a Vanilla SetVAE, we employ a bottom-
up encoder same to our full model and make the following
changes to the top-down generator. As illustrated in Fig-
ure 12, we remove the subset relation in the generator by fix-
ing the latent cardinality to 1 and employing a global prior
N(uy,01) with py,01 € R*4 for all ABL. To compute
permutation-invariant h.,. € R'*?, we aggregate every el-
ements of h from all levels of encoder network by average
pooling. During inference, he,. is provided to every ABL
in the top-down generator.

Evaluation metric For the ablation study of SetVAE on
the Set-MultiMNIST dataset, we measure the generation
quality in image space by rendering each set instance to
64 x 64 binary image based on the occurrence of a point
in a pixel bin. To measure the generation performance, we
compute Frechet Inception Distance (FID) score [9] using
the output of the penultimate layer of a VGGI11 network
trained from scratch for MultiMNIST image classification
into 100 labels (00-99). Given the channel-wise mean 4,
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Figure 13: Training loss curves from SetVAE with multi-
modal and unimodal initial set trained on Set-MultiMNIST
dataset.
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Figure 14: Samples from SetVAE and its ablated version
trained on Set-MultiMNIST dataset.

4 and covariance matrix 3,4, 2, of generated and reference
set of images respectively, we compute FID as follows:

d? = kg — MTHQ +Tr(3g + 3 —2¢/5g%,).  (46)

To train the VGG11 network, we replace the first conv
layer to take single-channel inputs, and use the same Mul-
tiMNIST train set as in SetVAE. We use the SGD optimizer
with Nesterov momentum, with learning rate 0.01, momen-
tum 0.9, and L2 regularization weight 5e-3 to prevent over-
fitting. We train the network for 10 epochs using batch size
128 so that the training top-1 accuracy exceeds 95%.

C. More Qualitative Results

Ablation study This section provides additional results of
the ablation study, which corresponds to the Table 3 of the
main paper. We compare the SetVAE with two baselines:
SetVAE with a unimodal prior and the one using a single
global latent variable (i.e., Vanilla SetVAE).

Figure 13 shows the training loss curves of SetVAE
and the unimodal prior baseline on the Set-MultiMNIST
dataset. We observe that training of the unimodal baseline
is unstable compared to SetVAE which uses a 4-component
MoG. We conjecture that a flexible initial set distribution
provides a cue for the generator to learn stable subset repre-
sentations.

In Figure 14, we visualize samples from SetVAE and the
two baselines. As the training of unimodal SetVAE was un-
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stable, we provide the results from a checkpoint before the
training loss diverges (third row of Figure 14). The Vanilla
SetVAE without hierarchy (second row of Figure 14) fo-
cuses on modeling the left digit only and fails to assign a
balanced number of points. This failure implies that multi-
level subset reasoning in the generative process is essen-
tial in faithfully modeling complex set data such as Set-
MultiMNIST.

Role of mixture initial set Although the multi-modal
prior is not a typical choice, we emphasize that it marginally
adds complexity to the model since it only introduces the
additional learnable mixture parameters (w,(co), ,u,(co), a,(co)).
Despite the simplicity, we observe that mixture prior is
effective in stabilizing training, especially when there are
clearly separating modes in data such as in the Set-
MultiMNIST dataset (Fig. 15). Still, the choice of the initial
prior is flexible and orthogonal to our contribution.

ShapeNet results Figure 16 presents the generated sam-
ples from SetVAE on ShapeNet, Set-MNIST and Set-
MultiMNIST datasets, extending the results in Figure 4 of
the main text. As illustrated in the figure, SetVAE generates
point sets with high diversity while capturing thin and sharp
details (e.g. engines of an airplane and legs of a chair, efc.).

Cardinality disentanglement Figure 17 presents the ad-
ditional results of Figure 5 in the main paper, which illus-
trates samples generated by increasing the cardinality of the
initial set z(?) while fixing the hierarchical latent variables
z(:1) | Ag illustrated in the figure, SetVAE is able to disen-
tangle the cardinality of a set from the rest of its generative
factors, and is able to generalize to unseen cardinality while
preserving the disentanglement.

Notably, SetVAE can retain the disentanglement and
generalize even to a high cardinality (100k) as well. Fig-
ure 18 presents the comparison to PointFlow with varying
cardinality, which extends the results of the Figure 6 in the
main paper. Unlike PointFlow that exhibits degradation and
blurring of fine details, SetVAE retains the fine structure of
the generated set even for extreme cardinality.

Coarse-to-fine dependency In Figure 19 and Figure 20,
we provide additional visualization of encoder and gener-
ator attention, extending the Figure 7 and Figure 8 in the
main text. We observe that SetVAE learns to attend to a sub-
set of points consistently across examples. Notably, these
subsets often have a bilaterally symmetric structure or cor-
respond to semantic parts. For example, in the top level of
the encoder (rows marked level 1 in Figure 19), the sub-
sets include wings of an airplane, legs & back of a chair, or
wheels & rear wing of a car (colored red).

Furthermore, SetVAE extends the subset modeling to
multiple levels with a top-down increase in latent cardinal-
ity. This allows SetVAE to encode or generate the struc-
ture of a set in various granularities, ranging from global
structure to fine details. Each column in Figure 19 and Fig-
ure 20 illustrates the relations. For example, in level 3 of
Figure 19, the bottom-up encoder partitions an airplane into
fine-grained parts such as an engine, a tip of the tail wing,
etc. Then, going bottom-up to level 1, the encoder com-
poses them to fuselage and symmetric pair of wings. As
for the top-down generator in Figure 20, it starts in level 1
by composing an airplane via the coarsely defined body and
wings. Going top-down to level 3, the generator descends
into fine-grained subsets like an engine and tail wing.

D. Architecture and Hyperparameters

Table 4 provides the network architecture and hyperpa-
rameters of SetVAE. In the table, FC(d, f) denotes a fully-
connected layer with output dimension d and nonlinear-
ity f. ISAB,,(d, h) denotes an ISAB,,, with m inducing
points, hidden dimension d, and h heads (in Section 2.2).
MoG (d) denotes a mixture of Gaussian (in Eq. (21)) with
K components and dimension d. ABL,,,(d, d., h) denotes
an ABL,,, with m inducing points, hidden dimension d, la-
tent dimension d_, and h heads (in Section 4). All MABs
used in ISAB and ABL uses fully-connected layer with bias
as FF layer.

In Table 5, we provide detailed training hyperparame-
ters. For all experiments, we used Adam optimizer with
first and second momentum parameters 0.9 and 0.999, re-
spectively and decayed the learning rate linearly to zero af-
ter 50% of the training schedule. Following [26], we lin-
early annealed 3 from O to 1 during the first 2000 epochs
for ShapeNet datasets, 40 epochs for Set-MNIST, and 50
epochs for Set-MultiMNIST dataset.
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Figure 16: Additional examples of generated point clouds from SetVAE.
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Figure 18: More examples in high-cardinality setting, compared with PointFlow.
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Figure 19: More examples of color-coded encoder attention.
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Figure 20: More examples of color-coded generator attention.



Table 4: Detailed network architectures used in our experiments.

ShapeNet Set-MNIST Set-MultiMNIST
Encoder Generator ‘ Encoder Generator ‘ Encoder Generator
Input: FC(64, —) Initial set: MoGy4(32) Input: FC(64, —) Initial set: MoG4(32) Input: FC(64, —) Initial set: MoG(64)
ISAB35(64, 4) ABL; (64,16, 4) ISABj35(64, 4) ABL (64,16, 4) ISAB35(64, 4) ABL (64,16, 4)
ISAB (64, 4) ABL; (64,16, 4) ISAB (64, 4) ABL4(64,16,4) ISAB;4(64, 4) ABL4(64, 16, 4)
ISAB3(64,4) ABL,(64,16,4) ISAB5(64,4) ABLs(64, 16,4) ISAB5(64,4) ABLs(64, 16,4)
ISAB,(64,4) ABL, (64,16, 4) ISAB, (64, 4) ABL (64, 16,4) ISAB,(64,4) ABL (64,16, 4)
ISAB, (64, 4) ABLg(64,16,4) ISAB, (64, 4) ABL35(64,16,4) ISAB, (64, 4) ABL35(64,16,4)
ISAB; (64, 4) ABL6(64,16,4) Output: FC(2, tanh) Output: FC(2, tanh)
ISAB, (64, 4) ABL32(64, 16, 4) (Output 4 1)/2 (Output 4 1)/2
Output: FC(3, —)

Table 5: Detailed training hyperparameters used in our experiments.

ShapeNet Set-MNIST Set-MultiMNIST
Minibatch size 128 64 64
Training epochs 8000 200 200
Learning rate le-3, linear decay to zero after half of training

B (Eq. (25)) 1.0, annealed (-2000epoch) 0.01, annealed (-50epoch) 0.01, annealed (-40epoch)




