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In this supplemental document, we present:
• brief summaries of active data sampling strategy of

our Task-Aware Variational Adversarial Active Learning
(TA-VAAL), accompanied by the corresponding algorithm
descriptions (Sec. 1);

• “independent” task learner performance results with-
out attaching loss prediction module (LPM) to show that
the attached LPM was not selected active sampling methods
were the most important factor for performances (Sec. 2);

• performance comparisons of “learning loss” methods
with the original loss and our modified ranking loss (called
learning loss_v2 in the main paper) (Sec. 3);

• absolute average accuracies and mIOU of active
learning results in the main paper. Additional results on
SVHN and Fashion-MNIST datasets were also presented
here. (Sec. 4);

• active learning results on CIFAR10 and CIFAR100
with a larger budget size that is consistent with the work of
VAAL. (Sec. 5);

• active learning results on Caltech256 with a larger
budget and using VGG16 network. (Sec. 6);

• details of hyperparameters for training in TA-VAAL
(Sec. 7);

• example images that were selected at each stage of
different active learning algorithms (Sec. 8);

1. Algorithm for active sampling strategy
Algorithm 1 details the sample selection strategy at each

stage of the TA-VAAL training process. The goal of each
sample selection strategy is collecting b number of samples
from unlabeled data pool XU to update the labeled pool.
First, we predicted the ranking of loss from Ranker, denoted
by R(; θR), for unlabeled data pool to obtain task-aware
(model-uncertainty) information:

rU ← R(xU ; θR), ∀xU ∈ XU ;

†Corresponding author.

This value will be normalized so that the absolute loss value
will not be preserved while the relative ranking information
will be preserved before embedded into the latent space
of VAE. Second, we got the latent space values from the
encoder of VAE, denoted by qθ(·), for unlabeled pool:

zU ← qθ(zU |xU ), ∀xU ∈ XU ;

Finally, we selected the data points (x∗1, .., x
∗
b) by the follow-

ing operation:

(x∗1, ..., x
∗
b) = argmin

(x1,...,xb)⊂XU

D(R(xU ), qθ(zU |xU ));

Note that the smaller the output of discriminatorD, the more
likely its latent space belongs to unlabeled pool. The main
idea of our approach is that rather than relying only on latent
space that represents the probability from unlabeled pool,
our proposed method utilized task-aware information from
Ranker that represents the score that task learner predicts
with low confidence to select influential and difficult data
points.

Algorithm 1: Active sampling in TA-VAAL
Input :budget size b and unlabeled data pool XU

Output :acquisition data samples (x∗1, .., x
∗
b)

Predict ranking of loss for unlabeled data pool:

rU ← R(xU ; θR), ∀xU ∈ XU ;

Get latent space values for unlabeled data pool:

zU ← qθ(zU |xU ), ∀xU ∈ XU ;

Choose the data points (x∗1, .., x
∗
b) by the following

operation:

(x∗1, ..., x
∗
b) = argmin

(x1,...,xb)⊂XU

D(R(xU ), qθ(zU |xU ));
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Figure 1: Active learning results with independent task
learner on CIFAR100 dataset.

2. Task learners without loss prediction mod-
ules

In [1], the task learner with loss prediction module was
trained to show the performance on actively selected samples
and was compared with other methods using the task learn-
ers without loss prediction modules. Since loss prediction
modules are part of learning loss method and our proposed
TA-VAAL method, it seems that these additional loss pre-
diction modules may influence the overall performance as
shown in Figures 3 and 4 of the main paper, often yield-
ing slightly higher or lower performances. To measure the
quality of the selected samples using active learning meth-
ods, we trained task learners of learning loss method and
our proposed method again without attaching loss prediction
module (or Ranker) on the selected samples up to 10k as
shown in Figure 1.

Our proposed method was able to yield the best perfor-
mance at all of stage on CIFAR100 as shown in Figure 5b
of this material, but now our proposed method stil outper-
forms all other methods on CIFAR100 dataset, except for
16k stage, since the effect of loss prediction module for task
learner training is minimized as illustrated in Figure 1. How-
ever, at the last stage (10k), our proposed method yielded
slightly enhanced performance by 0.51% compared with the
result of task learner with Ranker. Learning loss method also
has slightly improved performance by 0.36%. Despite these
changes, our proposed method still outperformed other state-
of-the-art methods by achieving mean accuracy of 68.83 %
in the last stage.

3. Loss comparisons for loss prediction module

Figure 2 shows the graph of average loss versus the num-
ber of epochs for learning loss methods with the original
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Figure 2: Losses for the loss prediction module over the
number of epochs in learning loss and learning loss_v2.

learning loss and our modified learning loss, called learning
loss_v2. After the 120th epoch, we did not back propagate
the gradient of Ranker so that the fluctuation of loss value is
stopped as implemented in the original learning loss method.
We observe that the loss for the loss prediction module of
learning loss (blue line) is not minimized possibly due to
fixed ε = 1 to emphasize more on the exact loss predictions,
less on the relative rankings of them. However, the rank-
ing loss of our modified learning loss (orange line) can be
minimized as iteration continues possibly due to the relaxed
condition for predicting loss values so that training seems to
be more stable than the original learning loss.

4. Absolute accuracies
In the main paper, we showed the improvements of ac-

curacy from the random sampling baseline over the number
of labeled dataset. In this section, we showed the absolute
accuracy curves over the number of labeled dataset in Fig-
ures 5 and 6. To further validate the effectiveness of our
proposed method, we performed additional experiments for
image classification on SVHN [2] and Fashion-MNIST [3]
datasets as illustrated in Figures 5c and 5d.

Dataset SVHN and Fashion-MNIST consist of 73,257 /
26,032 32× 32 images, and 60,000 / 10,000 28× 28 images
for training / testing, respectively, all with 10 classes. We
initially set labeled pool with randomly selected 1,000 im-
ages and the query size b was 1,000 at each stage. The other
experiment setting is equal to the setting of the balanced
image classification experiment in the main paper.

Implementation detail For training, data augmentation
methods that were used for CIFAR10 dataset were also used
on SVHN dataset. Only normalization was applied to Fash-
ion MNIST. ResNet18 [4] was used for all task learners
and stochastic gradient descent (SGD) optimizer was used
with momentum 0.9 and weight decay 0.005. Learning rate
was 0.1 for the first 160 epochs and then 0.01 for the rest
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of 40 epochs. For the VAE, a modified Wasserstein auto-
encoder [5] for taking ranking information was used and the
discriminator was constructed as a 5-layer multi-layer per-
ceptron (MLP). For both the VAE and the discriminator, the
Adam optimizer [6] with learning rate 5 ×10−4 was used.
Mini-batch size was 128 and the total epochs were 200 for
all datasets.

Results for balanced benchmark datasets Six active
learning methods were evaluated including random sampling,
Monte-Carlo dropout [7], Core-set [8], Learning loss [1],
VAAL [9] and our proposed TA-VAAL on two benchmark
datasets, SVHN and Fashion MNIST. Figure 5 presents the
number of labeled images versus the mean accuracy ± stan-
dard deviation from 5 trials.

In Figure 5c for SVHN, our proposed method outper-
formed other state-of-the-art methods in almost all stages
except for one stage (5k). Note that our TA-VAAL yielded
substantially higher mean accuracies than other methods at
early stages such as 3k and 4k.

In Figure 5d for Fashion MNIST, our TA-VAAL outper-
formed all other compared methods over almost all stages
except for the first stage and in particular yielded signifi-
cantly improved performances at the 3k stage by more than
5% margin.

5. Another setting on initial size & budget
In the main paper, our experiments used smaller number

of labels (1000 / 1000) or (2000 / 2000) that followed and
extended the settings of the work of learning loss [1] than the
reported VAAL experiments on CIFAR10, CIFAR100 (5000
/ 2500) [9]. We argue that our setting with smaller initial
size and budget would be more beneficial for active learning
than larger initial size and budget. However, for those who
are familiar with the work of VAAL [9], we briefly validate
our implementations with the same active learning setting
as VAAL for CIFAR10 and CIFAR100 (or 5000 / 2500 for
initial / budget sizes) and the results are presented in Figure 3.
Note that our proposed method still outperformed other state-
of-the-art methods in all stages for the same setting in VAAL
on both of dataset.

6. Another setting on a different network
In the main paper, we performed image classification

tasks with a task learner using ResNet18 as also used in [1].
Here we performed another image classification task on Cal-
tech256 with another task learner using VGG16 as also used
in [9]. The results are illustrated in Figure 4, showing simi-
lar trends as other results in our paper. We employed SGD
optimizer with hyperparameters as shown in Table 1. Note
that there were a number of different setups for optimizers
and hyperparameters among [9], its supplement material and
its source codes.
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(a) CIFAR10
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(b) CIFAR100

Figure 3: Active learning results with a large budget size
(5000 / 2500) on (a) CIFAR10 and (b) CIFAR100 dataset.

It seems that implementing the Learning loss method on
VGG16 network is non-trivial. Our implementation for it
is not optimized, but it still yielded slightly improved per-
formance over random selections. Due to our sub-optimal
Learning loss method with VGG16, our proposed TA-VAAL
with it also yielded slightly improved performance over
VAAL (except for the 4th stage). Thus, our proposed TA-
VAAL method yielded expected performance by exploiting
the Learning loss method [1] and the VAAL method [9] with
another task learner (VGG16) on a relatively large dataset
(Caltech256).

7. Detail on hyperparameters
Table 1 shows the hyperparameters for training our pro-

posed method for different datasets. We set these hyperpa-
rameters based on VAAL settings and tuned these through a
grid search.
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Table 1: Hyperparameters used in TA-VAAL. d is the latent space dimension of VAE. ζ1, ζ2, and ζ3 are learning rates of
task learner T, VAE, and discriminator D, respectively. η is a scaling parameter for total loss of task learner in Eq. (2). λ are
regularization parameters for transductive and adversarial losses of VAE. β is a Lagrangian parameter in Eq. (3). “Initial”
represents that the size of labeled data pool at initial stage and “budget” indicates that the size of samples which to be selected
at each stage. Zero padding was used. Large images were cropped considering the trade-off between training speed and GPU
resources.

Dataset d ζ1 ζ2 ζ3 η λ β batch size epochs Inital / budget image size

CIFAR10 64 1×10−1 5×10−4 5×10−4 1 1 1 128 200 1000 / 1000 32 × 32 (padded)
CIFAR100 64 1×10−1 5×10−4 5×10−4 1 1 1 128 200 2000 / 2000 32 × 32 (padded)
Caltech101 128 1×10−2 1×10−4 1×10−4 0.2 15 1 16 200 1000 / 500 224 × 224 (cropped)
Caltech256 128 5×10−4 5×10−4 5×10−4 0.1 15 1 64 100 3060 / 1530 224 × 224 (cropped)
Cityscapes 128 1×10−3 1×10−4 1×10−4 0.1 25 1 4 100 200 / 200 412 × 412 (cropped)
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Figure 4: Active learning results with different task learner
(VGG16) on Caletch256 dataset.

8. Example sampled images
Figure 7 shows some selected images at each stage of

different active learning methods, corresponding to the result
of Figure 3(a) in the main paper.
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(a) CIFAR10
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(b) CIFAR100
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(c) SVHN
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(d) Fashion-MNIST

Figure 5: Mean accuracy curves with standard deviation (shaded) of active learning methods over the number of labeled
samples on (a) CIFAR10 and (b) CIFAR100.
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(a) Imbalance×100
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(b) Imbalance×10
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(c) Caltech101
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(d) Cityscape

Figure 6: Mean accuracy or Mean intersection over union (IOU) curves with standard deviation (shaded) of active learning
methods over the number of labeled samples for image classifications on (a) modified CIFAR10 with imbalanced ×100, (b)
modified CIFAR10 with imbalanced ×10, (c) Caltech101 datasets and for semantic segmentation on (d) Cityscape dataset.
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(a) Learningloss - stage 1 (b) Learningloss - stage 2 (c) Learningloss - stage 3

(d) VAAL - stage 1 (e) VAAL - stage 2 (f) VAAL - stage 3

(g) TA-VAAL - stage 1 (h) TA-VAAL - stage 2 (i) TA-VAAL - stage 3

Figure 7: Example images of active samples with other comparison methods on the modified CIFAR10 dataset with imbalance
ratio ×100. Among budget 1k data points, top 100 data samples are displayed. The table represents the number of class
counts.
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