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Appendix

We provide additional implementation details for our
method, including a listing of hyperparameters (Tab. 1),
in Sec. A of this appendix. In Sec. B, we establish the
occlusion-aware distance metric for superquadrics, which
we need for our quantitative evaluation. Sec. C provides an
additional ablation study analysing the effectiveness of our
proposed occlusion-aware inlier counting (cf. Sec. 3.2.2 in
the main paper). In Sec. D, we show additional qualitative
results, including failure cases of our method.

A. Implementation Details
A.1. Feature Extraction Network

We employ the Big-to-Small (BTS) [10] depth estima-
tion CNN as our feature extraction network. We use a
variant of their approach using a DenseNet-161 [5] as the
base network. It is pre-trained on NYU Depth v2 [14] and
achieves state-of-the-art results for monocular depth esti-
mation. Please refer to [10] for details.

A.2. Sampling Weight Network

For prediction of sampling weights, we use a neural net-
work based on the architecture for scene coordinate regres-
sion used in [2]. Refer to Fig. 1 for an overview. The input
of the network is a concatenation of features Y and state s
of size H × W × 2, with image width W and height H .
When using ground truth depth as input, we normalise Y
by the mean and variance of the training set. When using
the features predicted by the feature extraction network, we
add a batch normalisation [6] layer between the two net-
works in order to take care of input normalisation. We aug-
mented the network of [2] with instance normalisation [16]
layers, which proved crucial for the ability of the network
to segment distinct structures in the scene. The network
thus consists of 3 × 3 and 1 × 1 convolutional layers, in-
stance normalisation layers [16], and ReLU activations [3]
arranged as residual blocks [4]. While most convolutions
are applied with stride one, layers two to four use a stride
of two, resulting in a final output spatially subsampled by

depth RGB
input input

tr
ai

ni
ng

learning rate 10−5 10−6

epochs 20 25
number of instances |M| 6 4
batch size B 2
IMR weight κim 10−2

correlation weight κcorr 1.0
entropy weight κentropy 1.0
single-instance samples |H| 32
sample count K 2

bo
th

inlier threshold τ 0.004
sampling weight sets Q 4
fh iterations 50
fh learning rate 0.2

te
st

number of instances |M| 6
single-instance samples |H| 4096
inlier cutoff (selection) Θ 10

Table 1: User definable parameters of our approach and
the values we chose for our experiments using either ground
truth depth or RGB images as input. We distinguish be-
tween values used during training and at test time. Mathe-
matical symbols refer to the notation used either in the main
paper or in this supplementary document.

a factor of eight w.r.t. the input. We apply sigmoid activa-
tion to the last convolutional layer to predict the sampling
weight sets Q(Y|M;w) with size H

8 ×
W
8 ×Q, i.e. Q sets

of sampling weights for each input. Additionally, we ap-
ply global average pooling and a fully-connected layer with
sigmoid activation to the output of the penultimate convo-
lutional layer in order to predict the selection weights q.

A.3. Neural Network Training

We implement our method using PyTorch [13] version
1.7.0. We use the Adam [8] optimiser to train the neural
networks. In order to avoid divergence induced by bad hy-
pothesis samples frequently occurring at the beginning of
training, we clamp losses to an absolute maximum value of
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Figure 1: Sampling Weight Network Architecture: We stack features Y and state s into a tensor of size H ×W × 2, with
image width W and height H . We feed this tensor into a neural network consisting of 3× 3 and 1× 1 convolutional layers,
instance normalisation layers [16], and ReLU activations [3] arranged as residual blocks [4]. The last convolutional layer
predicts the sampling weight setsQ(Y|M;w). We apply global average pooling and a fully-connected layer to the output of
the penultimate convolutional layer in order to predict the selection weights q. This architecture is based on [9, 2].

0.3. First, we train the sampling weight network by itself
using ground truth depth for 20 epochs with a learning rate
of 10−5. Then we fine-tune the sampling weight network
and the feature extraction network with RGB input together
for 25 epochs with a learning rate of 10−6. We use a batch
size B = 2 for all experiments. Training was performed
using two RTX 2080 Ti GPUs.

Regularisation. In addition to the main task loss
`(h,M), we apply the regularisation losses `corr and `entropy
in order to prevent mode collapse of the sampling weight
sets Q (cf. Sec. 3.5 in the main paper). We further-
more inherit the inlier masking regularisation (IMR) loss
`im from [9]. The final loss `final is thus a weighted sum of
all these losses:

`final = `+ κcorr · `corr + κentropy · `entropy + κim · `im . (1)

A.4. Occlusion Detection

In order to detect whether a cuboid h occludes a point y
from the perspective of a camera with centre c, we must first
translate c into the cuboid-centric coordinate frame. With-
out loss of generality, we assume c = (0, 0, 0)T and thus:

ĉ = R(c− t) = −Rt . (2)

We parametrise the line of sight for a point y as:

x(λ) = ŷ + λv , withv = ĉ− ŷ . (3)

We determine its intersections with each of the six cuboid
planes. For the plane orthogonal to the x-axis in its positive
direction, this implies that

λ =
ax − ŷTex

vTex
, (4)

where ex denotes the x-axis unit vector. If λ < 0, y lies
in front of the plane and is thus not occluded. Otherwise,
we must check whether the intersection actually lies on the
cuboid, i.e. d(h,x(λ)) = 0. If that is the case, then y is
occluded by this part of the cuboid. We repeat this check
accordingly for the other five cuboid planes. Via this proce-
dure we define an indicator function:

χo(y,h, i) =

{
1 if i-th plane of h occludes y,
0 else , with i ∈ {1, . . . , 6} .

(5)

A.5. Cuboid Fitting

We implement the minimal solver h = fh(S), which es-
timates cuboid parameters h from a minimal set of features
S = {y1, . . . ,yC}, via iterative numerical optimisation us-
ing gradient descent. To this end, we apply the Adam [8]
optimiser to minimise the objective 1

|S|‖F (S,h)‖1 (cf. Sec.
3.3 in the main paper). We perform 50 steps of gradient
descent with a learning rate of 0.2, starting from an initial
estimate h0.
Initialisation of the Minimal Solver. As good initialisa-
tion is crucial for fast convergence, we estimate the ini-
tial position of the cuboid via the mean of the features, i.e.
t0 = 1

|S|
∑

y∈S y. Secondly we estimate the rotation R via
singular value decomposition:

R0 = VT, with USVT =
[
y1 . . .y|S|

]T
. (6)

Lastly, we initialise the cuboid size with the element-wise
maximum of the absolute coordinates of the centred and ro-
tated features, with i ∈ {1, . . . , |S|}:ax0ay0

az0

 =

maxi |x̂i|
maxi |ŷi|
maxi |ẑi|

 , with

x̂iŷi
ẑi

 = R0(yi − t0) .
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This gives us an initial estimate h0 =
(ax0, ay0, az0,R0, t0).

A.6. Stopping Criterion

During evaluation, we always predict up to |M| cuboids.
However, similar to [9], we select primitive instances se-
quentially. The setM contains the already selected primi-
tives, and h is the next selected primitive. We only add h to
M is it increases the joint inlier count by at least Θ, i.e.:

Ic(Y,M∪ {h})− Ic(Y,M) > Θ . (7)

Otherwise the method terminates and returnsM as the re-
covered primitive configuration.

B. OA Distance for Superquadrics
The surface of a superellipsoid [1], which is the type of

superquadric used in [12, 11], can be described by its inside-
outside function:

fsq(x, y, z) =

((
x

ax

) 2
ε2

+

(
y

ay

) 2
ε2

) ε1
ε2

+

(
z

ay

) 2
ε1

− 1 ,

(8)
with ε1, ε2 describing the shape of the superquadric, and
ax, ay, az describing its extent along the canonical axes. If
fsq = 0, the point (x, y, z) resides on the superquadric sur-
face. For fsq > 0 and fsq < 0, it is outside or inside the
superquadric, respectively. Alternatively, a point on the su-
perquadric surface can be described by:

p(η, ω) =

ax cosε1(η) cosε2(ω)
ay cosε1(η) sinε2(ω)

az sinε1(η)

 , (9)

parametrised by two angles η, ω. The surface normal at
such a point is defined as:

n(η, ω) =

a−1x cos2−ε1(η) cos2−ε2(ω)
a−1y cos2−ε1(η) sin2−ε2(ω)

a−1z sin2−ε1(η)

 . (10)

Unfortunately, no closed form solution exists for calculat-
ing a point-to-superquadric distance, which we would need
in order to compute the occlusion-aware distance metric as
described in Sec. 3.2. We therefore approximate it by sam-
pling points and determining occlusion and self-occlusion
using Eq. 9 and Eq. 10.

B.1. Occlusion

Given a 3D point y = [x, y, z]
T and a camera centre

c = [0, 0, 0]
T, we sample L points uniformly on the line of

sight:

Ylos = { 1

L
y,

2

L
y, . . . ,y} = {y1, y2, . . . ,yL} . (11)

For a superquadric h = (ε1, ε2, ax, ay, az,R, t), we trans-
form all points in Ylos into the superquadric-centric coordi-
nate system:

ŷ = R(y − t) , (12)

and determine whether they are inside or outside of the su-
perquadric:

Flos = {fsq(ŷ1), . . . , fsq(ŷL)} . (13)

We then count the sign changes in Flos: if there are none, y
is not occluded by the superquadric; otherwise, it is:

χsq(y,h) =

{
1 if h occludes y,
0 else .

(14)

B.2. Self-Occlusion

Using the source code provided by the authors of [12],
we sample N points pi uniformly on the surface of su-
perquadric h and determine their corresponding surface
normals ni. For each point, we compute the vector vi =
pi − ĉ, with ĉ = R(c − t) being the camera centre in the
superquadric-centric coordinate system. If vTi ni = 0, i.e.
the two vectors are orthogonal, pi lies on the rim of the su-
perquadric, which partitions it into a visible and an invisible
part [7]. Assuming ni points outward, it follows that pi is
invisible if vTi ni > 0 and fsq(ĉ) > 0, in which case we
discard it. We denote the set of remaining visible points of
h as P(h).

B.3. Occlusion-Aware Distance

We define the distance of a point y to a single su-
perquadric h as the minimum distance to any of its visible
points P:

dsq(h,y) = min
p∈P(h)

‖p− y‖2 . (15)

Similarly to cuboids, we compute the distance of y to the
most distant occluding superquadric, given a set of su-
perquadricsM:

do,sq(M,y) = max
h∈M

(χsq(y,h) · dsq(h,y) ) , (16)

and corresponding occlusion-aware distance:

doa,sq(M,y) = max

(
min
h∈M

dsq(h,y), do,sq(M,y)

)
.

(17)

C. Ablation Study
In order to demonstrate the impact of our proposed

occlusion-aware (OA) inlier counting (cf. Sec. 3.4 in the
main paper), we selectively enabled or disabled the follow-
ing parts of our method:
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1. During training: occlusion-aware inlier counting for
sampling and hypothesis selection.

2. During training: occlusion-aware inlier counting for
loss computation (cf. Sec. 3.5 main paper).

3. During inference: occlusion-aware inlier counting for
sampling and hypothesis selection.

When disabling the occlusion-aware inlier counting for one
component, we used regular inlier counting based on the
minimal L2 distance instead. We then evaluated these vari-
ants using ground truth depth input on the NYU [14] test
set, and show the results in Tab. 2.

As these results show, performance w.r.t. the occlusion-
aware L2 distance degrades severely when disabling the
occlusion-aware inlier counting during inference, regard-
less of whether it was used during training (cf. rows 5-8 in
Tab. 2). AUC percentages drop to single digits for smaller
upper bounds (20 cm and below), and the mean increases
from around 20 cm to more than 1.5 m. Conversely, the
mean of the regular L2 distance decreases by roughly a fac-
tor of four. This indicates that the recovered cuboids cover
more points, but create significantly more occlusions do-
ing so, which results in less reasonable scene abstractions.
However, when we look at the impact of occlusion-aware
inlier counting during training (cf. rows 1-4 in Tab. 2), the
differences are not as clear-cut. Using occlusion-aware in-
lier counting for both sampling and loss during training still
yields the highest AUC values, albeit with slimmer mar-
gins, between 0.2 and 4.8 percentage points. Disabling
occlusion-aware inlier counting for the loss only (row 3)
yields the second best AUC values, with the smallest margin
at AUC@50 cm and the largest margin at AUC@10 cm. Mean-
while, this configuration yields the lowest mean occlusion-
aware distance – 18.9 cm vs. 20.8 cm, i.e. 9.1% less. This
indicates fewer outlier points with errors > 50 cm, which
strongly influence the mean error, but lower representation
accuracy for inlier points with errors < 50 cm.

D. Qualitative Results
D.1. Occlusion-Aware Inlier Counting

Complementing the ablation study in Sec. C, we com-
pare example results with and without occlusion-aware in-
lier counting during inference in Fig. 3. As in Sec. C, re-
sults are based on ground truth depth input for the NYU
dataset. As these examples show, the occlusion-aware inlier
counting enables our method to reasonably abstract key ele-
ments of the scenes. Without occlusion-aware inlier count-
ing, however, the method predicts cuboids which are too
large and often intersecting, occluding most of the scene.
The AUC@5 cm values, which we also provide for each ex-
ample in the figure, emphasise this observation.

D.2. Failure Cases

We show failure cases of our method, i.e. examples with
below average AUC, in Fig. 2. Most common failure modes
of our approach are:

• Missing scene parts, for which no cuboid was fitted
(first and third column).

• Cuboids which are too large, too small, improperly ori-
ented, or simply too coarse (second column).

• Spurious cuboids, usually very thin and barely visible
form the original view (second and third column).

We conjecture that the first two failure modes can be miti-
gated via more effective sampling. The third failure mode
may require additional consideration in the inlier count-
ing procedure, or possibly just an increased instance cutoff
threshold (cf. Sec. A.6).

D.3. Cuboid Parsing Baseline

As mentioned in the main paper, we were unable to ob-
tain sensible results with the cuboid based approach of [15]
for the NYU dataset. We trained their approach on NYU
using ground truth depth input, following their instruc-
tions published together with their source code, using the
same input data as we did for the superquadrics approach
of [12], multiple times with different random seeds, but to
no avail. Their approach mostly predicts the same or very
similar cuboid configurations for different images. Often,
no cuboids are recovered at all. We show a couple of exam-
ples for three different training runs in Fig. 4.
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occlusion-aware inlier occlusion-aware L2-distance L2

training inference AUC@50 cm AUC@20 cm AUC@10 cm AUC@5 cm mean (cm) mean (cm)sampling loss sampling
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7 3 3 75.4% ±0.13 58.8% ±0.19 44.3% ±0.22 29.8% ±0.23 20.1 ±0.43 16.6 ±0.47
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Table 2: Ablation Study: We analyse the influence of our occlusion-aware inlier counting. We enable or disable it for
hypothesis sampling and selection during training, for loss computation during training, and for hypothesis sampling and
selection during inference. We evaluate on NYU Depth v2 [14] for depth input. We present AUC values (higher is better)
for various upper bounds of the occlusion-aware (OA) L2 distance . We also report mean OA-L2 and regular L2 distances
(lower is better). See Sec. C for details.

(a) Original images

AUC@5 cm: 17.1% 13.1% 15.2%

(b) Recovered cuboids, original view

(c) Recovered cuboids, top view

(d) Recovered cuboids, side view

Figure 2: Failure Cases. First row: Original images from
the NYU dataset. Rows (b)-(d): cuboids recovered from
ground truth depth using our method, showing views from
the perspective of the original image, as well as top and
side views. We also report the AUC@5 cm values for each
example above row (b). See Sec. D.2 for details.
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(a) Original images

AUC@5 cm: 70.2% 57.7% 57.3% 53.7% 50.8% 56.3%

(b) Recovered cuboids using occlusion-aware inlier counting, original view

(c) Recovered cuboids using occlusion-aware inlier counting, top view

(d) Recovered cuboids using occlusion-aware inlier counting, side view

AUC@5 cm: 17.5% 12.6% 0.0% 19.8% 0.0% 2.2%

(e) Recovered cuboids without occlusion-aware inlier counting, original view

(f) Recovered cuboids without occlusion-aware inlier counting, top view

(g) Recovered cuboids without occlusion-aware inlier counting, side view

Figure 3: Occlusion-Aware Inlier Counting. First row: Original images from the NYU dataset. Rows (b)-(d): cuboids
recovered from ground truth depth using our method with occlusion-aware inlier counting during inference. Rows (e)-(g):
results without occlusion-aware inlier counting. We show views from the perspective of the original image, as well as top
and side views. We also report the AUC@5 cm values for each example above rows (b) and (e). See Sec. D.1 for details.
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(a) Original images

(b) Recovered cuboids using [15], first training run

(c) Recovered cuboids using [15], second training run

(d) Recovered cuboids using [15], third training run

Figure 4: Cuboid Parsing Baseline: We show qualitative results for the cuboid based approach of [15]. Row (a) shows
the original images from the NYU dataset. Rows (b)-(d) show corresponding cuboid predictions by [15] for three different
training runs using ground truth depth as input. As these examples show, the method is unable to recover sensible cuboid
configurations for these real-world indoor scenes. See Sec. D.3 for details.
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