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A. Comparison of three types of vMF-based similarities
This section supplements the experimental result in Sec.3.1.1 and Tab.2 of the main manuscript by minutely comparing

three types of proposed similarities which are formulated as follows.

vMF: φe(cos θ;κ) = 2
exp(κ cos θ)− exp(−κ)

exp(κ)− exp(−κ)
− 1, (A.1)

t-vMF: φt(cos θ;κ) =
1 + cos θ

1 + κ(1− cos θ)
−1, (A.2)

q-vMF: φq(cos θ;κ, q) = 2
[1− (1− q)κ(1− cos θ)]

1
1−q − [1− 2(1− q)κ]

1
1−q

1− [1− 2(1− q)κ]
1

1−q

− 1, (A.3)

where κ is the concentration parameter and q is the parameter of q-exponential only for q-vMF. As discussed in Sec.2, those
three methods are distinguished mainly in terms of tail of the similarity measuring functions. To clarify the relationship
between performance and the tail, we show the performance comparison with various parameters in Tab. A as well as the
shapes of similarity measuring functions in Fig. A.

B. Comparison to Arc-kernel
As shown in Tab.3, the arc-kernel [2] is similar to ours in terms of shape of similarity measuring function; the actual form

of the arc-kernel is given by

Arc-kernel: φa(θ;n) ∝ (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n(
π − θ
sin θ

)
, (B.1)

where ∝ indicates to apply the standardization into [−1,+1], and the actual computation forms are given by

φa(θ;n = 2) ∝3

2
sin(2θ) + (π − θ){2 + cos(2θ)}, (B.2)

φa(θ;n = 4) ∝40 sin(2θ) + 25

4
sin(4θ) + 3(π − θ){18 + 16 cos(2θ) + cos(4θ)}, (B.3)

φa(θ;n = 8) ∝444528 sin(2θ) + 234612 sin(4θ) + 32112 sin(6θ) +
6849

8
sin(8θ)

+ 315(π − θ){2450 + 3136 cos(2θ) + 784 cos(4θ) + 64 cos(6θ) + cos(8θ)}. (B.4)

Compared to our t-vMF (A.2), however, the arc-kernel is less-flexibly formulated due to the discrete parameter of order
n (B.1) and the similarity measuring function is less compact with light tail as shown in Fig. B. Besides, the computational
forms of the arc-kernel (B.2-B.4) are complicated and inefficient in comparison to t-vMF (A.2). In term of the classification
performance, it is inferior to ours as shown in Tab. B.
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Table A. Performance comparison of vMF-based similarities with various κ on ImageNet-LT. We report top-1 error rate (%) with top-5.

vMF: κ 0 (cos) 2 4 8 16 32 64 128 256
t-vMF: κ 0 (cos) 2 4 8 16 32 64 128 256

q-vMF: (κ, q) 0 (cos) (1,4) (2,8) (4,12) (8,16) (16,32) (32,32) (64,32) (128,32)

vMF (A.1) 61.32 38.44 60.25 37.05 59.16 35.90 58.11 34.30 75.84 53.58 96.85 90.79 96.95 90.94 100.0 100.0 100.0 100.0

t-vMF (A.2) 61.32 38.44 60.40 37.01 59.17 35.98 58.18 34.47 57.30 32.92 56.49 31.97 56.31 31.78 57.22 32.03 58.66 33.32

q-vMF (A.3) 61.32 38.44 60.61 37.45 59.96 36.53 59.15 35.65 59.05 35.17 60.62 36.32 60.89 36.36 60.51 35.96 60.86 36.14
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Figure A. Comparison of similarity measuring functions used in Tab. A. The parameters (κ, q) of q-vMF are tuned so as to produce the
similar shape around θ = 0 to vMF/t-vMF while having heavier tails.

Table B. Performance comparison to arc-kernel [2] on ImageNet-LT.

t-vMF: κ 2 4 8
arc-kernel: n 2 4 8

t-vMF (A.2) 60.40 37.01 59.17 35.98 58.18 34.47

arc-kernel [2] 60.80 37.75 60.05 37.10 58.93 35.54
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Figure B. Arc-kernels [2] with various orders n.

C. Hyper-parameters of comparison methods
We prefix the set of hyper-parameters of the comparison methods [7, 3, 9, 5, 1, 8] used in Tab.5 based on the respective

papers and then report the best performance among them for fair comparison.
Large-margin methods. We apply large-margin softmax (L-softmax) [7], the representative large-margin method, as well
as the sophisticated method of ArcFace [3]. L-softmax [7] equipped with k = 2 in cos(kθ) is mixed up with the standard
cosine similarity cos θ by the convex mixing weight of 1

1+1000βt during the training in order to gradually enhance the effect
of large-margin; we set β ∈ {0.9995, 0.9999, 0.99999}. For ArcFace [3] which degrades the logit of ground-truth class by
cos(θ +m), we apply m ∈ {0.1, 0.2, 0.5}.
Regularization losses. The softmax cross-entropy loss can be accompanied by regularization losses of center loss [9] and
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Table C. Performance results on the small-scale datasets. The lower rows report the performance of the combination methods with
DropOut [8], while the upper rows are the same as those of Tab.5.

Small-scale

Dataset ImageNet-S ImageNet-SS
CNN ResNet-10 ResNet-10

Softmax 55.53 31.58 70.52 48.47

L-Softmax [7] 53.41 29.60 65.83 41.74

ArcFace [3] 53.95 29.68 65.18 40.69

Center Loss [9] 55.11 31.24 70.03 47.72

Classifier Loss [5] 55.36 31.55 70.21 48.05

Virtual Softmax [1] 60.85 33.30 70.90 43.93

DropOut [8] 52.69 28.21 66.41 42.78

t-vMF (A.2) (κ=16) 52.06 27.54 64.77 40.67

DropOut+
L-Softmax [7] 51.35 27.43 65.55 41.55

ArcFace [3] 53.72 29.00 64.67 39.88

Center Loss [9] 52.14 28.22 65.97 42.22

Classifier Loss [5] 52.29 28.10 66.09 42.17

Virtual Softmax [1] 62.49 34.77 71.89 45.39

t-vMF (A.2) (κ = 16) 50.98 26.64 63.00 37.97

classifier loss [5] with the weight parameter λ; it is set to λ ∈ {0.1, 0.01, 0.001} for those two types of additional regulariza-
tion losses.
Others. The virtual softmax loss [1] favorably contains no hyper-parameter to be tuned. The method of DropOut [8] is
applied to the (final) feature representation x with the drop-out ratio of p ∈ {0.1, 0.2, 0.3} based on the analysis [6].

D. Combination with DropOut
As shown in Tab.5, DropOut works well for learning CNNs on the small-scale dataset due to the simple yet effective

feature perturbation. In the small-scale situation, we can expect that such a perturbation in input features x is compatible
with the regularization to reduce within-class variance like ours. The DropOut perturbation would provide adversarial
regularization [4] for our methods from the viewpoint of feature representation; the feature perturbation might be regarded as
enlarging within-class variance adversarially to our regularization.

Performance results by the combination methods with the DropOut are shown in Tab. C. While the regularization losses [9,
5] to reduce the within-class variance via additional loss term is improved by the DropOut, the proposed method of t-
vMF (A.2) is also further improved to produce better performance.
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