
Supplementary – Learning monocular 3D reconstruction of articulated
categories from motion

Filippos Kokkinos
University College London

filippos.kokkinos@ucl.ac.uk

Iasonas Kokkinos
University College London, Ariel AI

i.kokkinos@cs.ucl.ac.uk

1. Overview
We provide additional results including visualizations

of the learned deformations, comparisons to CMR [3] and
ACSM [4], qualitative results on a collection of different
objects and technical details about the training procedure.
Please note that the supplementary material contains a col-
lection of video results.

2. Training Procedure
2.1. Per-sample optimization training framework

We build on the camera multiplex training procedure
proposed by Goel et al. [2] to train the proposed method. We
provide a small review of the method for coherency, however
we refer the reader to [2] for a thorough explanation and
technical details.

The authors propose using a learnable set of possible
camera hypotheses for each training instance that is learned
simultaneously with the rest of the 3D reconstruction CNN.
In detail, each training instance i has Ci = {π1, . . . , πNc

}
associated camera hypotheses, which are modelled as weak
perspective cameras (s ∈ R, t ∈ R2,q ∈ R4), that are
retrieved from a ’camera database’ during training using
unique indices for each training sample. Each camera πi
is optimized to minimize the reconstruction losses for the
silhouette Lsil,i and the texture Ltex,i like those used in
our proposed framework. For updating the parameters of
the method, the resulting losses Li = Lsil,i + Ltex,i of the
camera set are used as a distribution over the most likely
camera pose. This is encoded as a probability pi = e−Li∑

j e−Lj

for πi to be the most likely camera. Using the computed
distribution the final loss is formulated as

Ltotal =
∑
i

pi (Lsil,i + Ltex,i) .

The final step of this training procedure is to train a cam-
era predictor using the most probable camera of each training
image conditioned on the image features extracted from the

backbone CNN that is driving the whole reconstruction pro-
cess.

Building on this optimization driven paradigm, we extend
the training protocol with three distinct modifications. First
of all, alongside the silhouette and textures losses we incor-
porate also the motion re-projection loss that is described in
detail in the main paper. Furthermore, we extend the camera
set with per image deformations D which is only one per
image unlike the multiple cameras. In our pipeline, each
training image i has a camera set Ci and a single handle de-
formation vector Di ∈ RK×3 (with K being the number of
handles) that are both used to express a multi-hypotheses dis-
tribution similar to [2]. Thirdly, unlike the aforementioned
work, we simultaneously train our deformation and camera
prediction branches using the most probable explanation for
both the camera and deformation in accordance to the result-
ing silhouette and texture losses. This is achieved by adding
two extra losses in the total loss function that minimize the
`2 norm of the difference between the predicted quantity and
the optimized one retrieved from the ’database’ for each of
the cameras and deformations.

In the main paper we presented experiments that relied on
mask, motion, texture losses and in some cases also semantic
keypoint re-projection loss. In the case of keypoint trained
networks, we set Nc = 1 and initialize the camera with a
rigid SfM camera in accordance to CMR [3]. For all other
experiments, we use Nc = 8 and initialize the camera set C
for every image in the training set with camera hypotheses
whose azimuth is uniformly spaced on the viewing sphere.
The handle deformations D are initialized with zeros which
corresponds to the template shape. As a first step, each cam-
era is optimized using the silhouette loss Lsil and motion
loss Lmotion using the template shape before training the
rest of the method. We implement a drop hypotheses proce-
dure [2] to reduce the computational complexity where the
most improbable hypotheses are discarded from the camera
set. In detail, after 20 epochs we keep the four most proba-
ble cameras and after 100 epochs we keep only the 2 most
probable cameras. Any training augmentations that scale

and translate the training image i are directly encoded as
affine transformations on the respective camera set Ci while
the deformation Di remains unchanged since the depicted
deformation of the object remains identical.

2.2. Architecture Details

We use the same encoder-decoder architecture that is pre-
sented in [3, 2]. Every image is encoded using an ImageNet
pre-trained ResNet18 to a latent feature map z ∈ R4×4×256.
A flattened version of z is processed with two MLP linear
layers with output channels equal to 200 and the final result
is given to the handle deformation predictor and camera pre-
dictor branches. The handle deformation branch provides
the handle offsets ∆H ∈ RK×3 and the camera predictor
predicts the scale, translation and rotation, which is encoded
as quartenions, through 2 fully connected layers each with
200 channels. Finally, we use the same texture predictor
architecture as [2] which takes as input the encoded features
z and outputs the UV texture map Iuv ∈ R128×256×3.

3. Learnable Laplacian Solver
Our algorithm builds on Laplacian surface editing tech-

niques [5] which allow us to control a template mesh through
handles while minimally distorting the template’s shape.
We represent the 3D shape of a category as a triangular
mesh M = (V, F) with vertices V ∈ RN×3 and fixed
edges F ∈ ZNf×3. Our deformation approach relies on the
cotangent-based discretization L ∈ RN×N of the continuous
Laplace-Beltrami operator used to calculate the curvature at
each vertex of a mesh [6].

We obtain our K handles H1,...,K through a learnable
dependency matrix A ∈ RK×N

+ that is right-stochastic, i.e.∑
v Ak,v = 1, effectively forcing every handle to lie in the

convex hull of the mesh vertices by H = AV. The network’s
task is phrased as regressing the handle positions, denoted as
∆H . Based on those handles, we obtain the deformed mesh
V∗ as the minimum of the following quadratic loss:

V∗ = arg min
V

1

2
‖LV − LT‖2 +

1

2

∥∥∥AV − H̃
∥∥∥2 , (1)

where as in [5] the first term enforces the solution to
respect the curvature of the template mesh, LT, while the
second one penalizes the difference between the location of
the handles according to V and the target location, H̃ =
HT + ∆H . The stationary point of (1) can be found by
solving the following linear system:

(LTL + ATA)V = LTLT + ATH̃ (2)

The solution V∗ of Eq. (2) can be very efficiently com-
puted with conjugate gradients or sparse solvers. In the
forward case we obtain the solution using a sparse least

square solver by concatenating the two matrices L and A.
As it will be presented the backward operation requires a
different treatment and as such in the backward operation
we make use of a linear solver for PSD matrices.

We want to compute the gradients with respect to the
learnable dependency matrix A and the handle offset H̃. We
rewrite equation (2) as WV = b where W = LTL+ATA
and b = LTLT+ATH. The direct solution is V = W−1b
and W is a symmetric PSD matrix as the addition of two like-
wise matrices. Instead of resorting to matrix inversion, we
compute V using a linear solver for symmetric PSD matrices.
To compute the necessary gradients for backpropagation of
gradients through Equation (1), we rely on matrix calcu-
lus and use of three Kronecker product ⊗ properties [1]:
1) vec(QWE) = (ET ⊗ Q)vec(W), 2) Tm,nvec(Q) =
vec(QT) and 3) (Q⊗W)(E⊗R) = (QE⊗WR) .

The gradients of any linear solver for symmetric matrices
are the following

∂g(V)

∂b
=
∂V

∂b

∂g(V)

∂V
=
∂W−1b

∂b

∂g(V)

∂V

= W−T ∂g(V)

∂V
= W−1 ∂g(V)

∂V

(3)

∂g(V)

∂ vec(W)
=

∂V

∂ vec(W)

∂g(V)

∂V
=

W−1b

∂ vec(W)

∂g(V)

∂V

=
∂ vec(W−1)

∂ vec(W)

∂W−1b

∂ vec(W−1)

∂g(V)

∂V

=
∂ vec(W−1)

∂ vec(W)

∂W−1b

∂ vec(W−1)

∂g(V)

∂V

=
∂ vec(W−1)

∂ vec(W)

∂(bT ⊗ I) vec(W−1)

∂ vec(W−1)

∂g(V)

∂V

= (−W−1 ⊗W−1)T(bT ⊗ I)T
∂g(V)

∂V

= (−W−1 ⊗W−1)(b⊗ I)
∂g(V)

∂V

= −(V ⊗W−1)
∂g(V)

∂V
= −V ⊗ ∂g(V)

∂b
(4)

As such,

∂g(V)

∂W
= −∂g(V)

∂b
VT (5)

After calculating the gradients of the linear solver, the
final step is the computation of the gradients with respect
to the handle position regression H̃ and learnable depen-
dency matrix A. The gradient of the first quantity is straight
forward to calculate using Equation (3).

2

∂g(V)

∂H̃
=

∂b

∂H̃

∂g(V)

∂b
=
∂(LTLT + ATH̃)

∂H̃

∂g(V)

∂b

= A
∂g(V)

∂b

(6)

Lastly we provide the gradient with respect to the learn-
able dependency matrix A

∂g(V)

∂ vec(A)
=

∂b

∂ vec(A)

∂g(V)

∂b
+
∂ vec(W)

∂ vec(A)

∂g(V)

∂ vec(W)
(7)

∂b

∂ vec(A)
=
∂(LTLT + ATH̃)

∂ vec(A)
=
∂ vec(ATH̃)

∂ vec(A)

=
∂ vec(AT)

∂ vec(A)

∂(H̃⊗ I) vec(AT)

∂ vec(AT)

=
∂TK,N vec(A)

∂ vec(A)
(H̃T ⊗ I)T = TN,K(H̃⊗ I)

(8)

∂ vec(W)

∂ vec(A)
=
∂(LTL + ATA)

∂ vec(A)
=
∂ vec(ATA)

∂ vec(A)

= IN ⊗AT + (AT ⊗ IN)TK,N

(9)

In Figure 1 we provide a PyTorch implementation of the
differentiable Laplacian deformation module which has been
thoroughly gradient checked. We omit some PyTorch related
boilerplate code for clarity.

4. PCA on deformations
In Figure 2 we visualize the learned deformations for a

wide range of articulated objects. The visualization is created
by running PCA for each object on all 3D reconstructions
obtained on training and test dataset. The mean shape is
depicted in the center while the first three PCA axis are
visualized alongside the mean shape. The visualizations
shows some interesting deformations across objects. In all
cases the deformations capture clearly movements of legs,
the tail and head.

5. More Results
5.1. Comparisons on Horses

In Figure 3 we provide comparisons against prior articu-
lated reconstruction work [4]. Note that both methods used
identical template mesh. The proposed method is capable of
achieving realisting deformations without the requirement of
manual part segmentation as a result of the proposed differ-
entiable deformation module. We also include several videos

of horses for extra comparisons. The videos demonstrate
that our method provides camera predictions and deforma-
tions that are robust across frames and match closely the
movements of the depicted object.

5.2. Comparisons on CUB

In Figure 4 we provide comparisons against prior work
on common training supervision. It is apparent that our
method is capable of correctly deforming the template mesh
to produce highly flexible wings or bending and turning the
body and head of the birds. In nearly all results, ACSM lacks
the necessary 3D shape deformation which is caused by the
segmentation of the template shape in 3 parts (head, body
and tail). CSM is providing results with better deformations
to ACSM, however as it can be seen almost all open wing
results are obtained with the offset of a small set of points
which causes uneven surfaces (for example Row 4 left). Our
method due to the Laplacian based Deformation produces
always meshes with well allocated vertices. Furthermore,
our results exhibit interesting features like rotation of the
head (Row 2-left, Row 1-right), open wing formations and
bending of the beak (Row 5-left), i.e. pecking.

5.3. More Results

In Figures 5-9 we provide a wide collection of 3D re-
constructions for several highly articulated objects. We also
include a collection of videos as part of the supplementary
material with reconstructions of several classes. Our com-
mon visualization setup is input image, 3D reconstruction
from the predicted viewpoint and a different one and finally
the textured mesh reconstruction.

5.4. Failure Cases

We visualize some failure cases of the proposed method in
Figure 10. Common failure cases are related to the inability
to predict a good camera pose and the inference of simplistic
textures.

References
[1] Paul L Fackler. Notes on matrix calculus. Privately Published,

2005. 2
[2] Shubham Goel, Angjoo Kanazawa, , and Jitendra Malik. Shape

and viewpoints without keypoints. In ECCV, 2020. 1, 2
[3] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and

Jitendra Malik. Learning category-specific mesh reconstruction
from image collections. In ECCV, 2018. 1, 2, 7

[4] Nilesh Kulkarni, Abhinav Gupta, David F Fouhey, and Shub-
ham Tulsiani. Articulation-aware canonical surface mapping.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 452–461, 2020. 1, 3, 6,
7

[5] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa,
Christian Rössl, and H-P Seidel. Laplacian surface editing.

3

Laplacian for paper

November 22, 2020

[]: class Diff_LPL(Function):
@staticmethod
def forward(ctx, L, A, T, tildeH):

delta = L @ T
A_lstsq = np.concatenate([L, A],axis=0) # sparse matrix
b_lstsq = np.concatenate([delta, tildeH],axis=0)
V = scipy.sparse.linalg.lsqr(A_lstsq, b_lstsq) # or any other␣

↪→appropriate sparse solver
save required quantities for backward
return V

@staticmethod
def backward(ctx, grad_output):

W = ctx.L.T @ ctx.L + ctx.A.T @ ctx.A # dense matrix
grad_over_b = scipy.linalg.solve(W, grad_output, sym_pos=True) #␣

↪→gradient of solver w.r.t b
grad_over_W = - grad_over_b @ ctx.V.T # gradient of solver w.r.t. W
grad_over_tildeH = ctx.A @ grad_over_b # gradient w.r.t. \tilde{H}
dg_b_dA = ctx.tildeH @ grad_over_b.T
dg_W_dA = ctx.A @ grad_over_W + ctx.A @ grad_over_W.T
grad_over_A = dg_b_dA + dg_W_dA # gradient w.r.t. A
return None, grad_over_A, None, grad_over_tildeH

1

Figure 1: PyTorch implementation of the proposed Differentiable Laplacian Solver.

In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 175–184, 2004. 2

[6] Gabriel Taubin. A signal processing approach to fair surface
design. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pages 351–358,
1995. 2

4

(a) Fox (b) Cow (c) Horse

(d) Tiger (e) Zebra (f) Deer

(g) Birds (h) Bear (i) Giraffe

Figure 2: Bird Reconstructions Visualization of the predicted deformations for several objects by depicting the mean shape
in the center and the first 3 modes obtained by PCA on the handle estimates obtained across the dataset.

5

ACSM Ours ACSM Ours

Figure 3: Reconstruction comparisons of our method and ACSM [4] for the object horse.

6

ACSM CMR Ours ACSM CMR Ours

Figure 4: Bird Reconstructions: Qualitative comparisons between our method, CMR [3] and ACSM [4] with images from
the CUB test set.

7

Figure 5: 3D reconstructions We show the input image, the reconstructed shape from the predicted and a novel view and
finally the predicted texture.

8

Figure 6: 3D reconstructions We show the input image, the reconstructed shape from the predicted and a novel view and
finally the predicted texture.

9

Figure 7: 3D reconstructions We show the input image, the reconstructed shape from the predicted and a novel view and
finally the predicted texture.

10

Figure 8: 3D reconstructions We show the input image, the reconstructed shape from the predicted and a novel view and
finally the predicted texture.

11

Figure 9: 3D reconstructions We show the input image, the reconstructed shape from the predicted and a novel view and
finally the predicted texture.

12

Figure 10: Failure Cases: We visualize some failure modes of our method. The columns present the input image, 3D
reconstruction from the predicted viewpoint and a different one and the predicted texture .

13

