
[Supplementary Material] MoViNets: Mobile Video Networks for Efficient Video
Recognition

Dan Kondratyuk∗, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan, Matthew Brown, Boqing Gong
Google Research

{dankondratyuk,lzyuan,yandongli,zhl,tanmingxing,mtbr,bgong}@google.com

Appendix

We supplement the main text by the following materials.

• Appendix A provides more details of the search space,
the technique to scale the search space, and the search
algorithm.

• Appendix B is about the neural architectures of
MoViNets A0-A7.

• Appendix C reports additional results on the datasets
studied in the main text along with ablation studies.

A. MoViNet Architecture Search

A.1 Scaling Algorithm for the Search Space

To produce models that scale well, we progressively ex-
pand the search space across width, depth, input resolution,
and frame rate, like EfficientNet [25]. Specifically, we use
a single scaling parameter φ to define the size of our search
space. Then we define the following coefficients:

depth: d = αφ = 1.36φ

base width: w = βφ = 1.18φ

resolution: r = γφ = 1.16φ

frame-rate: f = δφ = 1.24φ

such that αβ2γ2δ ≈ 4. This will ensure that an increase in
φ by 1 will multiply the average model size in the search
space by 4. Here we use a multiplier of 4 (instead of 2)
to spread out our search spaces so that we can run the same
search space with multiple efficiency targets and sample our
desired target model size from it.

As a result, our parameters for a given search space is

∗Work done as a part of the Google AI Residency.

the following:

depth: L ∈ {d, . . . , 10d}
base width: cbase ∈ {16w, 24w, 48w, 96w, 96w, 192w}
resolution: S = 224r

frame-rate: τ = 5f.

We round each of the above parameters to the nearest mul-
tiple of 8. If φ = 0, this forms the base search space for
MoViNet-A2. Note that cexpand is defined relative to cbase,
so we do not need coefficients for it.

We found coefficients α, β, γ, δ using a random search
over these parameters. More specifically, we select val-
ues in the range [1.05, 1.40] at increments of 0.05 to repre-
sent possible values of the coefficients. We ensure that the
choice of coefficients is such that αβ2γ2δ ≈ 4, where the
initial computation target for each frame is 300 MFLOPs.
For each combination, we scale the search space by the co-
efficients where φ = 1, and randomly sample three archi-
tectures from each search space. We train models for a se-
lected search space for 10 epochs, averaging the results of
the accuracy for that search space. Then we select the co-
efficients that maximize the resulting accuracy. Instead of
selecting a single set of coefficients, we average the top 5
candidates to produce the final coefficients. While the sam-
ple size of models is small and would be prone to noise, we
find that the small averages work well in practice.

A.2 Search Algorithm

During search, we train a one-shot model using Tu-
NAS [3] that overlaps all possible architectures into a hy-
pernetwork. At every step during optimization, we alternate
between learning the network weights and learning a policy
π which we use to randomly sample a path through the hy-
pernetwork to produce an initially random network archi-
tecture. π is learned using REINFORCE [26], optimized
on the quality of sampled architectures, defined as the ab-
solute reward consisting of the sampled network’s accuracy
and cost. At each stage, the RL controller must choose a

1



single categorical decision to select an architectural compo-
nent. The network architecture is a result of binding a value
to each decision. For example, the decision might choose
between a spatial 1x3x3 convolution and a temporal 5x1x1
convolution. We use FLOPs as the cost metric for architec-
ture search, and use Kinetics 600 as the dataset to optimize
for efficient video networks. During search, we obtain val-
idation set accuracies on a held-out subset of the Kinetics
600 training set, training for a total of 90 epochs.

The addition of SE [14] to our search space increases
FLOPs by such a small amount (< 0.1%) that the search
enables it for all layers. SE plays a similar role as the fea-
ture gating in S3D-G [28], except with a nonlinear squeeze
inside the projection operation.

A.3 Stream Buffers for NAS

We apply the stream buffers to MoViNets as a separate
step after NAS in the main text. We can also leverage them
for NAS to reduce memory usage during search. Memory
poses one of the biggest challenges for NAS, as models are
forced to use a limited number of frames and small batch
sizes to be able to keep the models in memory during opti-
mization. While this does not prevent us from performing
search outright, it requires the use of accelerators with very
high memory requirements, requiring a high cost of entry.
To circumvent this, we can use stream buffers with a small
clip size to reduce memory. As a result, we can increase the
total embedded frames and increase the batch size to pro-
vide better model accuracy estimation while running NAS.
Table 1 provides an example of an experiment where the use
of a stream buffer can reduce memory requirements in this
manner. Using a stream buffer, we can reduce the input size
from a single clip of 16 frames to 2 clips of 8 frames each,
and double the batch size. This results in a relatively mod-
est increase in memory, compared to not using the buffer
where we can run into out-of-memory (OOM) issues.

We note that the values of b in each layer influences the
memory consumption of the model. This is dependent en-
tirely on the temporal kernel width of the 3D convolution.
If k = 5, then we only need to cache the last 4 frames. b
could be larger, but but it will result in extra frames we will
discard, so we set it to the smallest value to conserve mem-
ory. Therefore, it is not necessary to specify it directly with
NAS, as NAS is only concerned with the kernel sizes. How-
ever, we can add an objective to NAS to minimize memory
usage, which will apply pressure to reduce the temporal ker-
nel widths and therefore will indirectly affect the value of b
in each layer. Reducing memory consumption even further
by keeping kernel sizes can be explored in future work.

CONFIG FULL INPUT BATCH SIZE Memory TOP-1

No Buffer 16×1722 8 5.8 GB 55.9
Buffer (8 frames) 16×1722 16 6.6 GB 58.5
No Buffer 16×1722 16 10.4 GB OOM

Table 1. Effect of Stream Buffer on NAS (Kinetics 600). We
measure the effect of NAS on MoViNet-A0 when using a stream
buffer vs. without on the same input. By embedding half the input
at a time, we can double the batch size to improve the average NAS
held-out accuracy without significantly increasing GPU memory
per device.

B. Architectures of MoViNets

See Tables 11, 12, 13, 14, 15, and 16 for the architec-
ture definitions of MoViNet A0-A5 (we move the tables to
the final pages of the Appendices to reduce clutter). For
MoViNet-A6, we ensemble architectures A4 and A5 using
the strategy described in the main text, i.e., we train both
models independently and apply an arithmetic mean on the
logits during inference. All layers of all models have SE
layers enabled, so we remove this search hyperparameter
from all tables for brevity.

B.1 More Details of the Architectures and Training

We apply additional changes to our architectures and
model training to improve performance even further. To
improve convergence speed in searching and training we
use ReZero [2] by applying zero-initialized learnable scalar
weights that are multiplied with features before the final
sum in a residual block. We also apply skip connections
that are traditionally used in ResNets, adding a 1x1x1 con-
volution in the first layer of each block which may change
the base channels or downsample the input. However, we
modify this to be similar to ResNet-D [12] where we ap-
ply 1x3x3 spatial average pooling before the convolution to
improve feature representations.

We apply Polyak averaging [20] to the weights after ev-
ery optimization step, using an Exponential Moving Aver-
age (EMA) with decay 0.99. We adopt the Hard Swish ac-
tivation function, which is a variant of SiLU/Swish [9, 21]
proposed by MobileNetV3 [13] that is friendlier to quanti-
zation and CPU inference. We use the RMSProp optimizer
with momentum 0.9 and a base learning rate of 1.8. We train
for 240 epochs with a batch size of 1024 with synchronized
batch normalization on all datasets and decay the learning
rate using a cosine learning rate schedule [17] with a linear
warm-up of 5 epochs.

We use a softmax cross-entropy loss with label smooth-
ing 0.1 during training, except for Charades where we apply
sigmoid cross-entropy to handle the multiple-class labels
per video. For Charades, we aggregate predictions across
frames similar to AssembleNet [23], where we apply a soft-

2



1010 1011

FLOPs

70

72

74

76

78

80

82

To
p-

1 
Ac

cu
ra

cy
 (%

)

50
80 120

50
80 120

50

80 120

50
80

120 50
80 120

MoViNet-A0
MoViNet-A1
MoViNet-A2
MoViNet-A3
MoViNet-A4

Figure 1. Effect of Frame-Rate on Efficiency on Kinetics 600.
We train and evaluate each model with 50, 80, and 120 frames at
5fps, 8fps, and 12fps respectively.

max across frames before applying temporal global average
pooling to find multiple action classes that may occur in dif-
ferent frames.

Some works also expand the resolution for inference.
For instance, X3D-M trains with a 2242 resolution while
evaluating 2562 when using spatial crops. We evaluate all
of our models on the same resolution as training to make
sure the FLOPs per frame during inference is unchanged
from training.

Our choice of frame-rates can vary from model to model,
providing different optimality depending on the architec-
ture. We plot the accuracy of training various MoViNets on
Kinetics 600 with different frame-rates in Figure 1. Most
models have good efficiency at 50 frames (5fps) or 80
frames (8fps) per video. However, we can see MoViNet-A4
benefits from a higher frame-rate of 12fps. For Charades,
we use 64 frames at 6fps for both training and inference.

C. More Implementation Details and Experiments

C.1 Hardware Benchmark

MoViNets A0, A1, and A2 represent the fastest models
that would most realistically be used on mobile devices. We
compare them with MobileNetV3 in Figure 2 with respect
to both FLOPs and real-time latency on an x86 Intel Xeon
W-2135 CPU at 3.70GHz. These models are comparable in
per-frame computation cost, as we evaluate on 50 frames for
all models. From these results we can conclude that stream-
ing MoViNets can run faster on CPU while being more ac-
curate at the same time, even with temporal modifications
like TSM. While there is a discrepancy between FLOPs and
latency, searching over a latency target explicitly in NAS
can reduce this effect. However, we still see that FLOPs
is a reasonable proxy metric for CPU latency, which would
translate well for mobile devices.

50 100 150 200
MFLOPs per Frame

55

60

65

70

75

80

To
p-

1 
Ac

cu
ra

cy
 (%

)

MoViNet-Base
MoViNet-Stream
MobileNetV3 + TSM
MobileNetV3

2 4 6 8
x86 CPU Latency per Frame (ms)

MoViNet-Stream
MobileNetV3 + TSM
MobileNetV3

Figure 2. CPU Latency Comparison on Kinetics 600. We
compare the efficiency of MoViNets (A0, A1, A2) vs. Mo-
bileNetV3 [13] using FLOPs and benchmarked latency on an x86
Xeon CPU at 3.70GHz.

MODEL STREAMING VIDEO (MS) FRAME (MS) TOP-1

MoViNet-A0-Stream X 183 3.7 70.3
MoViNet-A1-Stream X 315 6.3 75.6
MoViNet-A2-Stream X 325 6.5 76.5
MoViNet-A3-Stream X 1110 9.2 79.6
MoViNet-A4-Stream X 1130 14.1 80.5
MoViNet-A5-Stream X 2310 19.2 82.0

MobileNetV3-S* X 68 1.4 61.3
MobileNetV3-L* X 81 1.6 68.1

X3D-M* (Single Clip) 7 345 6.9 76.9
X3D-XL* (Single Clip) 7 943 18.9 80.3

Table 2. Runtime on an Nvidia V100 GPU on Kinetics 600.
Latency is given for the entire video clip and per frame in ms.

We also show benchmarks for MoViNets running on an
Nvidia V100 GPU in Table 2. Similar to mobile CPU, our
streaming model latency is comparable to single-clip X3D
models. However, we do note that MobileNetV3 can run
faster than our networks on GPU, showing that the FLOPs
metric for NAS has its limitations. MoViNets can be made
more efficient by targeting real hardware instead of FLOPs,
which we leave for future work.

C.2 Implementing Causal Convolution by Padding

To make a temporal convolution operation causal, we
can apply a simple padding trick which shifts the receptive
field forward such that the convolutional kernel is centered
at the frame furthest into the future. Figure 3 illustrates this
effect. With a normal 3D convolution operation with kernel
size (kt, kh, kw) and stride s = 1, the padding with respect
to dimension i is given as:

pleft
i , pright

i =

{
(ki−1

2 , ki−1
2 ) if x is odd

(ki−2
2 , ki2 ) otherwise.

(1)

3



Figure 3. Standard Convolution vs. Causal Convolution. The
figure illustrates the effective receptive field along a sequence of
frames. The temporal kernel size is 3, with padding shown in
white. Causal convolution can be performed efficiently by padding
only on one side of the time axis thus to force the output causality.

DATASET TRAIN VALID RELEASED

Kinetics 400 215,435 (87.5%) 17,686 (88.4%) May 2017
Kinetics 600 364,305 (92.8%) 27,764 (92.5%) Aug 2018
Kinetics 700 524,595 (96.2%) 33,567 (95.9%) Jul 2019

Table 3. The number of examples available for each of the Kinet-
ics dataset splits at the time of writing (Sept 20, 2020) along with
the percentages compared to examples available on release. Each
dataset loses about 4% of its examples per year.

where pleft
i , pright

i are the left and right padding amounts re-
spectively. For causal convolutions, we transform pt as:

pleft causal
t , pright causal

t = (pleft
t + pright

t , 0). (2)

such that the effective temporal receptive field of a voxel at
time position t only spans (0, t].

C.3 Additional Details of Datasets

We note that for all the Kinetics datasets are gradually
shrinking over time due to videos being taken offline, mak-
ing it difficult to compare against less recent works. We
report on the most recently available videos. While putting
our work at a disadvantage compared to previous work, we
wish to make comparisons more fair for future work. Never-
theless, we report the numbers as-is and report the reduction
of examples in the datasets in Table 3.

We report full results of all models in the following ta-
bles: Table 4 for Kinetics 400, Table 5 for Kinetics 600
(with top-5 accuracy), Table 6 for Kinetics 700, Table 7 for
Moments in Time, Table 8 for Charades, and Table 9 for
Something-Something V2. For a table of results on Kinet-
ics 600, see Table 5 and also the main text.

C.4 Single-Clip vs. Multi-Clip Evaluation

We report all of our results on a single view without
multi-clip evaluation. Additionally, we report the total num-
ber of frames used for evaluation and the frame rate (note

MODEL TOP-1 GFLOPS PARAM

MoViNet-A0 65.8 2.71 3.1M

MoViNet-A1 70.2 6.02 4.6M
MoViNet-A1-Stream 68.3 6.06 4.6M

MoViNet-A2 74.1 10.3 4.8M
X3D-XS [10] 69.5 23.3 3.8M

MoViNet-A3 75.9 56.9 5.3M
X3D-S [10] 73.5 76.1 3.8M

MoViNet-A4 76.4 105 5.9M
X3D-M [10] 76.0 186 3.8M

MoViNet-A5 78.2 289 15.7M
X3D-L [10] 77.5 744 6.1M

MoViNet-A6 79.1 289 31.4M
X3D-XL [10] 79.1 1452 11.0M

TimeSformer-HR [4] 80.7 645 -
X3D-XXL [10] 80.4 5600 20.3M

Table 4. Accuracy of MoViNet on Kinetics 400.

MODEL TOP-1 Top-5 GFLOPS Param

MoViNet-A0 71.5 90.4 2.71 3.1M
MoViNet-A0-Stream 70.3 90.1 2.73 3.1M

MoViNet-A1 76.0 92.6 6.02 4.6M
MoViNet-A1-Stream 75.6 92.8 6.06 4.6M

MoViNet-A2 77.5 93.4 10.3 4.8M
MoViNet-A2-Stream 76.5 93.3 10.4 4.8M

MoViNet-A3 80.8 94.5 56.9 5.3M

MoViNet-A4 81.2 94.9 105 4.9M
X3D-M [10] 78.8 94.5 186 3.8M

MoViNet-A5 82.7 95.7 281 15.7M
X3D-XL [10] 81.9 95.5 1452 11.0M
SlowFast-R50 [11] 78.8 94.0 1080 34.4M
SlowFast-R101 [11] 81.8 95.1 7020 59.9M

Table 5. Accuracy of MoViNet on Kinetics 600 with additional
top-5 data.

MODEL TOP-1 GFLOPS PARAM

MoViNet-A0 58.5 2.71 3.1M

MoViNet-A1 63.5 6.02 4.6M

MoViNet-A2 66.7 10.3 4.8M

MoViNet-A3 68.0 56.9 5.3M

MoViNet-A4 70.7 105 4.9M

MoViNet-A5 71.7 281 15.7M

MoViNet-A6 72.3 386 31.4M
SlowFast-R101 [11, 1] 70.2 3200 30M
SlowFast-R152 [11, 1] 71.6 9500 80M

EfficientNet-L2 (pretrain) [27, 1] 76.2 15400 480M

Table 6. Accuracy of MoViNet on Kinetics 700.

that the evaluation frames can exceed the total number of
frames in the reference video when subclips overlap).

4



MODEL TOP-1 GFLOPS PARAM

MoViNet-A0 27.5 4.07 3.1M

MoViNet-A1 32.0 9.03 4.6M
TVN-1 [19] 23.1 13.0 11.1M

MoViNet-A2 34.3 15.5 4.8M
MoViNet-A2-Stream 33.6 15.6 4.8M
TVN-2 [19] 24.2 17.0 110M

MoViNet-A3 35.6 35.6 5.3M
TVN-3 [19] 25.4 69.0 69.4M

MoViNet-A4 37.9 98.4 4.9M
TVN-4 [19] 27.8 106 44.2M

MoViNet-A5 39.1 175 15.7M
SRTG-R3D-34 [24] 28.5 220 -

MoViNet-A6 40.2 274 31.4M
ResNet3D-50 [23] 27.2 - -
SRTG-R3D-50 [24] 30.7 300 -
SRTG-R3D-101 [24] 33.6 350 -
AssembleNet-50 (RGB+Flow) [23] 31.4 480 37.3M
AssembleNet-101 (RGB+Flow) [23] 34.3 760 53.3M

Table 7. Accuracy of MoViNet on Moments in Time. All
MoViNets are evaluated on 75 frames at 25 fps.

MODEL MAP GFLOPS PARAM

MoViNet-A2 32.5 6.59 4.8M
TVN-1 [19] 32.2 13.0 11.1M

TVN-2 [19] 32.5 17.0 110M

TVN-3 [19] 33.5 69.0 69.4M

MoViNet-A4 48.5 90.4 4.9M
TVN-4 [19] 35.4 106 44.2M

MoViNet-A6 63.2 306 31.4M
AssembleNet-50 (RGB+Flow) [23] 53.0 700 37.3M
AssembleNet-101 (RGB+Flow) [23] 58.6 1200 53.3M
AssembleNet++ (RGB+Flow+Seg)[22] 59.8 1300 -
SlowFast 16x8 R101 [11] 45.2 7020 59.9M

Table 8. Accuracy of MoViNet on Charades.

MODEL TOP-1 Top-5 GFLOPS Param

MoViNet-A0 61.3 88.2 2.71 3.1M
MoViNet-A0-Stream 60.9 88.3 2.73 3.1M
TRN [29] 48.8 77.6 - -

MoViNet-A1 62.7 89.0 6.02 4.6M
MoViNet-A1-Stream 61.6 87.3 6.06 4.6M

MoViNet-A2 63.5 89.0 10.3 4.8M
MoViNet-A2-Stream 63.1 89.0 10.4 4.8M
TSM [16] 63.4 88.5 33.0 24.3M
VoV3D-M (16 frame) [15] 63.2 88.2 34.2 3.3M

MoViNet-A3 64.1 88.8 23.7 5.3M

VoV3D-M (32 frame) [15] 65.2 89.4 69.0 3.3M
VoV3D-L (32 frame) [15] 67.3 90.5 125 5.8M

Table 9. Accuracy of MoViNet on Something-Something V2.
All MoViNets are evaluated on 50 frames at 12 fps. For shorter
clips with fewer than 50 frames, we repeat the video sequence
from the beginning.

5 10 15 20
GFLOPs per Video

66

68

70

72

74

76

78

80

To
p-

1 
Ac

cu
ra

cy
 (%

)

1

3
5 7

1

3

5 7 10

16 Frames Train - Single Clip
48 Frames Train - Single Clip
16 Frames Train - Multi-Clip
8 Frames Train - Multi-Clip

Figure 4. Single vs. Multi-Clip Evaluation on Kinetics 600. A
comparison between the number of training frames and the num-
ber of eval frames and clips. The number of clips are shown inside
each datapoint, where applicable. Other datapoints are evaluated
on single clips. We use MoViNet-A2 with frame stride 3 for all
datapoints.

As seen in Figure 1 and Table 2 (in the main text),
switching from a multi-clip to single-clip X3D model on
Kinetics 600 (where we cover the entire 10-second clip) re-
sults in much higher computational efficiency per video.
Existing work typically factors out FLOPs in terms of
FLOPs per subclip, but it can hide the true cost of computa-
tion, since we can keep adding more clips to boost accuracy
higher.

We also evaluate the differences between training the
same MoViNet-A2 model on smaller clips vs. longer clips
and evaluating the models with multi-clip vs. single-clip, as
seen in Figure 4. For multi-clip evaluation, we can see that
accuracy improves when the number of clips fill the whole
duration of the video (this can be seen at 5 clips for 8 train-
ing frames and at 3 clips for 16 training frames), and only
very slightly improves as we add more clips. However, if we
train MoViNet-A2 on 16 frames and evaluate on 80 frames
(so that we cover all 10 seconds of the video), this results
in higher accuracy than the same number of frames using
multi-clip eval. Furthermore, we can boost this accuracy
even higher if we use 48 frames to train our model. Using
stream buffers, we can reduce memory usage of training so
that we can train using 48 frames while only using the mem-
ory of embedding 16 frames at a time.

C.5 Streaming vs. Non-Streaming Evaluation

One question we have wondered is if the distribution
of features learned is different from streaming and non-
streaming architectures. In Figure 5, we plot the average ac-
curacy across Kinetics 600 of a model evaluated on a single
frame by embedding an entire video, pooling across spatial

5



0 25 50 75 100 125 150 175 200 225 250
Frame Index #

30

35

40

45

50

55

60

To
p-

1 
Ac

cu
ra

cy
 (%

)

MobileNetV3
MoViNet A2 Stream
MoViNet A2

Figure 5. Difference Between Streaming and Base MoViNets.
The plot displays the average accuracy across the Kinetics 600
dataset of an embedded model by applying the classification lay-
ers independently on each frame. Shading around each solid line
indicates one standard deviation.

dimensions, and applying the classification layers indepen-
dently on each frame.

We first notice that the accuracy MobileNetV3 and
MoViNet-A2 exhibit a Laplace distribution, on average
peaking at the center frame of each video. Since Mo-
bileNetV3 is evaluated on each frame independently, we
can observe that the most salient part of the actions is on
average in the video’s midpoint. This is a good indicator
that the videos in Kinetics are trimmed very well to cen-
ter around the most salient part of each action. Likewise,
MoViNet-A2, with balanced 3D convolutions, has the same
characteristics as MobileNetV3, just with higher accuracy.

However, the dynamics of streaming MoViNet-A2 with
causal convolutions is entirely different. The distribution of
accuracy fluctuates and varies more than non-streaming ar-
chitectures. By removing the ability for the network to see
all frames as a whole with causal convolutions, the aggre-
gation of features is not the same as when using balanced
convolutions. Despite this difference, overall, the accuracy
difference across all videos is only about 1%. And by look-
ing at top-5 accuracy in Table 5, we can notice that stream-
ing architectures nearly perform the same, despite the ap-
parent information loss when transitioning to a model with
a time-unidirectional receptive field.

C.6 Long Video Sequences

Figure 6 shows how training clip duration affects the ac-
curacy of a model evaluated at different durations. We can
see that MoViNet can generalize well beyond the original
clip duration it was trained with, always improving in ac-
curacy with more frames. However, the model does notably
worse if evaluated on clips with shorter durations than it was

10 20 30 40 50 60 70 80
Frames (Eval)

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

To
p-

1 
Ac

cu
ra

cy
 (%

)

8 Frames (Train)
16 Frames (Train)
48 Frames (Train)

Figure 6. Generalization to Longer Clips. A display of how
duration of a clip during training affects the evaluation accuracy
of different clip durations during evaluation. We use MoViNet-A2
with frame stride 3 for all datapoints.

MODEL TOP-1 GFLOPS PARAMS

MoViNet-A2b-3D 79.0 17.1 4.8M
MoViNet-A2b-(2+1)D 79.4 16.8 5.0M

Table 10. 3D vs. (2+1)D on Kinetics 600.

trained on. Longer clip duration for training translates to
better accuracy for evaluation on longer clips overall. And
with a stream buffer, we can train on even longer sequences
to boost evaluation performance even higher.

However, we also see we can operate frame-by-frame
with stream buffers, substantially saving memory, showing
better memory efficiency than multi-clip approaches and
requiring constant memory as the number of input frames
increase (and therefore temporal receptive field). Despite
the accuracy reduction, we can see MoViNet-Stream mod-
els perform very well on long video sequences and are still
more efficient than X3D which requires splitting videos into
smaller subclips.

C.7 Stream Buffers with Other Operations

WaveNet [18] introduces causal convolution, where the
receptive field on a stack of 1D convolutions is forced to
only see activations up to the current time step, as opposed
to balanced convolutions which expand their receptive fields
in both directions. We take inspiration from causal convolu-
tions [6, 5, 8] to design stream buffers. However, WaveNet
only proposes 1D convolutions for generative modeling, us-
ing them for their autoregressive property. We generalize
the idea of causal convolution to any local operation, and
introduce stream buffers to be able to use causal operations
for online inference, allowing frame-by-frame predictions.
In addition, Transformer-XL [7] caches activations in a tem-

6



poral buffer much like our work, for use in long-range se-
quence modeling. However, the model is only causal across
fixed sequences while our work can be causal across indi-
vidual frames, and can even vary the number of frames in
each clip (so long as frames are consecutive with no gaps or
overlaps between clips). We can apply the same principle
to other operations as well to generalize causal operations.
Note that this approach is not inherently tied to any data
type or modality. Stream buffers can also be used to model
many kinds of temporal data, e.g., audio, text.

(2+1)D CNNs. Additionally, support for efficient 3D con-
volutions on mobile devices is currently fragmented, while
2D convolutions are well supported. We include the op-
tion to search for (2+1)D architectures, splitting up any 3D
depthwise convolutions into a 2D spatial convolution fol-
lowed by a 1D temporal convolution. We show that trivially
changing a 3D architecture to (2+1)D decreases FLOPs
while also keeping similar accuracy, as seen in table 10.
Here we define MoViNet-A2b as a searched model similar
to MoViNet-A2.

STAGE OPERATION OUTPUT SIZE

data stride 5, RGB 50 × 1722

conv1 1 × 32, 8 50 × 862

block2 [
1×52, 8, 40

]
50 × 432

block3
 5×32, 32, 80

3×32, 32, 80
3×32, 32, 80

 50 × 212

block4
 5×32, 56, 184

3×32, 56, 112
3×32, 56, 184

 50 × 102

block5
 5×32, 56, 184

3×32, 56, 184
3×32, 56, 184
3×32, 56, 184

 50 × 102

block6
 5×32, 104, 344

1×52, 104, 280
1×52, 104, 280
1×52, 104, 344

 50 × 52

conv7 1 × 12, 480 50 × 52

pool8 50 × 52 1 × 12

dense9 1 × 12, 2048 1 × 12

dense10 1 × 12, 600 1 × 12

Table 11. MoViNet-A0 Architecture.

STAGE OPERATION OUTPUT SIZE

data stride 5, RGB 50 × 1722

conv1 1 × 32, 16 50 × 862

block2
[

1×52, 16, 40
3×32, 16, 40

]
50 × 432

block3
 3×32, 40, 96

3×32, 40, 120
3×32, 40, 96
3×32, 40, 96

 50 × 212

block4


5×32, 64, 216
3×32, 64, 128
3×32, 64, 216
3×32, 64, 168
3×32, 64, 216

 50 × 102

block5


5×32, 64, 216
3×32, 64, 216
3×32, 64, 216
3×32, 64, 128
1×52, 64, 128
3×32, 64, 216

 50 × 102

block6


5×32, 136, 456
1×52, 136, 360
1×52, 136, 360
1×52, 136, 360
1×52, 136, 456
3×32, 136, 456
1×32, 136, 544


50 × 52

conv7 1 × 12, 600 50 × 52

pool8 50 × 52 1 × 12

dense9 1 × 12, 2048 1 × 12

dense10 1 × 12, 600 1 × 12

Table 12. MoViNet-A1 Architecture.

7



STAGE OPERATION OUTPUT SIZE

data stride 5, RGB 50 × 2242

conv1 1 × 32, 16 50 × 1122

block2
 1×52, 16, 40

3×32, 16, 40
3×32, 16, 64

 50 × 562

block3


3×32, 40, 96
3×32, 40, 120
3×32, 40, 96
3×32, 40, 96

3×32, 40, 120

 50 × 282

block4


5×32, 72, 240
3×32, 72, 160
3×32, 72, 240
3×32, 72, 192
3×32, 72, 240

 50 × 142

block5


5×32, 72, 240
3×32, 72, 240
3×32, 72, 240
3×32, 72, 240
1×52, 72, 144
3×32, 72, 240

 50 × 142

block6


5×32, 144, 480
1×52, 144, 384
1×52, 144, 384
1×52, 144, 480
1×52, 144, 480
3×32, 144, 480
1×32, 144, 576


50 × 72

conv7 1 × 12, 640 50 × 72

pool8 50 × 72 1 × 12

dense9 1 × 12, 2048 1 × 12

dense10 1 × 12, 600 1 × 12

Table 13. MoViNet-A2 Architecture.

STAGE OPERATION OUTPUT SIZE

data stride 5, RGB 120 × 2562

conv1 1 × 32, 16 120 × 1282

block2
 1×52, 16, 40

3×32, 16, 40
3×32, 16, 64
3×32, 16, 40

 120 × 642

block3


3×32, 48, 112
3×32, 48, 144
3×32, 48, 112
1×52, 48, 112
3×32, 48, 144
3×32, 48, 144

 120 × 322

block4


5×32, 80, 240
3×32, 80, 152
3×32, 80, 240
3×32, 80, 192
3×32, 80, 240

 120 × 162

block5


5×32, 88, 264
3×32, 88, 264
3×32, 88, 264
3×32, 88, 264
1×52, 88, 160
3×32, 88, 264
3×32, 88, 264
3×32, 88, 264


120 × 162

block6


5×32, 168, 560
1×52, 168, 448
1×52, 168, 448
1×52, 168, 560
1×52, 168, 560
3×32, 168, 560
1×52, 168, 448
1×52, 168, 448
3×32, 168, 560
1×32, 168, 672


120 × 82

conv7 1 × 12, 744 120 × 82

pool8 120 × 82 1 × 12

dense9 1 × 12, 2048 1 × 12

dense10 1 × 12, 600 1 × 12

Table 14. MoViNet-A3 Architecture.

8



STAGE OPERATION OUTPUT SIZE

data stride 5, RGB 80 × 2902

conv1 1 × 32, 24 80 × 1452

block2


1×52, 24, 64
3×32, 24, 64
3×32, 24, 96
3×32, 24, 64
3×32, 24, 96
3×32, 24, 64

 80 × 722

block3


5×32, 56, 168
3×32, 56, 168
3×32, 56, 136
3×32, 56, 136
3×32, 56, 168
3×32, 56, 168
3×32, 56, 168
1×52, 56, 136
3×32, 56, 136


80 × 362

block4


5×32, 96, 320
3×32, 96, 160
3×32, 96, 320
3×32, 96, 192
3×32, 96, 320
3×32, 96, 152
3×32, 96, 320
3×32, 96, 256
3×32, 96, 320


80 × 182

block5


5×32, 96, 320
3×32, 96, 320
3×32, 96, 320
3×32, 96, 320
1×52, 96, 192
3×32, 96, 320
3×32, 96, 320
3×32, 96, 192
3×32, 96, 320
3×32, 96, 320


80 × 182

block6 

5×32, 192, 640
1×52, 192, 512
1×52, 192, 512
1×52, 192, 640
1×52, 192, 640
3×32, 192, 640
1×52, 192, 512
1×52, 192, 512
1×52, 192, 640
1×52, 192, 768
1×52, 192, 640
3×32, 192, 640
3×32, 192, 768



80 × 92

conv7 1 × 12, 856 80 × 92

pool8 80 × 92 1 × 12

dense9 1 × 12, 2048 1 × 12

dense10 1 × 12, 600 1 × 12

Table 15. MoViNet-A4 Architecture.

STAGE OPERATION OUTPUT SIZE

data stride 5, RGB 120 × 3202

conv1 1 × 32, 24 120 × 1602

block2


1×52, 24, 64
1×52, 24, 64
3×32, 24, 96
3×32, 24, 64
3×32, 24, 96
3×32, 24, 64

 120 × 802

block3


5×32, 64, 192
3×32, 64, 152
3×32, 64, 152
3×32, 64, 152
3×32, 64, 192
3×32, 64, 192
3×32, 64, 192
3×32, 64, 152
3×32, 64, 152
3×32, 64, 192
3×32, 64, 192


120 × 402

block4 

5×32, 112, 376
3×32, 112, 224
3×32, 112, 376
3×32, 112, 376
3×32, 112, 296
3×32, 112, 376
3×32, 112, 224
3×32, 112, 376
3×32, 112, 376
3×32, 112, 296
3×32, 112, 376
3×32, 112, 376
3×32, 112, 376



120 × 202

block5


5×32, 120, 376
3×32, 120, 376
3×32, 120, 376
3×32, 120, 376
1×52, 120, 224
3×32, 120, 376
3×32, 120, 376
3×32, 120, 224
3×32, 120, 376
3×32, 120, 376
3×32, 120, 376


120 × 202

block6


5×32, 224, 744
3×32, 224, 744
1×52, 224, 600
1×52, 224, 600
1×52, 224, 744
1×52, 224, 744
3×32, 224, 744
1×52, 224, 896
1×52, 224, 600
1×52, 224, 600
1×52, 224, 896
1×52, 224, 744
3×32, 224, 744
1×52, 224, 896
1×52, 224, 600
1×52, 224, 600
1×52, 224, 744
3×32, 224, 744



120 × 102

conv7 1 × 12, 992 120 × 102

pool8 120 × 102 1 × 12

dense9 1 × 12, 2048 1 × 12

dense10 1 × 12, 600 1 × 12

Table 16. MoViNet-A5 Architecture.

9



References
[1] Activitynet task b: Kinetics challenge. http : / /

activity-net.org/challenges/2020/tasks/
guest_kinetics.html. 2020. 4

[2] Thomas Bachlechner, Bodhisattwa Prasad Majumder,
Huanru Henry Mao, Garrison W Cottrell, and Julian
McAuley. Rezero is all you need: Fast convergence at large
depth. arXiv preprint arXiv:2003.04887, 2020. 2

[3] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang
Cheng, Pieter-Jan Kindermans, and Quoc V Le. Can weight
sharing outperform random architecture search? an investi-
gation with tunas. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14323–14332, 2020. 1

[4] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
arXiv preprint arXiv:2102.05095, 2021. 4

[5] Shuo-Yiin Chang, Bo Li, Gabor Simko, Tara N Sainath, An-
shuman Tripathi, Aäron van den Oord, and Oriol Vinyals.
Temporal modeling using dilated convolution and gating for
voice-activity-detection. In 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pages 5549–5553. IEEE, 2018. 6

[6] Changmao Cheng, Chi Zhang, Yichen Wei, and Yu-Gang
Jiang. Sparse temporal causal convolution for efficient ac-
tion modeling. In Proceedings of the 27th ACM International
Conference on Multimedia, pages 592–600, 2019. 6

[7] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell,
Quoc V Le, and Ruslan Salakhutdinov. Transformer-xl:
Attentive language models beyond a fixed-length context.
arXiv preprint arXiv:1901.02860, 2019. 6

[8] Divyanshu Daiya, Min-Sheng Wu, and Che Lin. Stock
movement prediction that integrates heterogeneous data
sources using dilated causal convolution networks with at-
tention. In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pages 8359–8363. IEEE, 2020. 6

[9] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-
weighted linear units for neural network function approxima-
tion in reinforcement learning. Neural Networks, 107:3–11,
2018. 2

[10] Christoph Feichtenhofer. X3d: Expanding architectures for
efficient video recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 203–213, 2020. 4

[11] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
Proceedings of the IEEE international conference on com-
puter vision, pages 6202–6211, 2019. 4, 5

[12] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classification
with convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 558–567, 2019. 2

[13] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1314–1324, 2019. 2, 3

[14] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 2

[15] Youngwan Lee, Hyung-Il Kim, Kimin Yun, and Jinyoung
Moon. Diverse temporal aggregation and depthwise spa-
tiotemporal factorization for efficient video classification.
arXiv preprint arXiv:2012.00317, 2020. 5

[16] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift
module for efficient video understanding. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 7083–7093, 2019. 5

[17] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 2

[18] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gener-
ative model for raw audio. arXiv preprint arXiv:1609.03499,
2016. 6

[19] AJ Piergiovanni, Anelia Angelova, and Michael S Ryoo.
Tiny video networks: Architecture search for efficient video
models. 2020. 5

[20] Boris T Polyak and Anatoli B Juditsky. Acceleration of
stochastic approximation by averaging. SIAM journal on
control and optimization, 30(4):838–855, 1992. 2

[21] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017. 2

[22] Michael S Ryoo, AJ Piergiovanni, Juhana Kangaspunta, and
Anelia Angelova. Assemblenet++: Assembling modality
representations via attention connections-supplementary ma-
terial. 2020. 5

[23] Michael S Ryoo, AJ Piergiovanni, Mingxing Tan, and Anelia
Angelova. Assemblenet: Searching for multi-stream neu-
ral connectivity in video architectures. arXiv preprint
arXiv:1905.13209, 2019. 2, 5

[24] Alexandros Stergiou and Ronald Poppe. Learn to cycle:
Time-consistent feature discovery for action recognition.
arXiv preprint arXiv:2006.08247, 2020. 5

[25] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019. 1

[26] Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992. 1

[27] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet clas-
sification. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10687–
10698, 2020. 4

[28] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning
for video understanding. arXiv preprint arXiv:1712.04851,
1(2):5, 2017. 2

10



[29] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-
ralba. Temporal relational reasoning in videos. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 803–818, 2018. 5

11


