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Overview
In this supplementary document, we show additional ex-

perimental results and provide more implementation details.
Specifically, we demonstrate the advantage of using weak
labels from LAEO data on an additional in-the-wild phys-
ically unconstrained gaze-related task besides gaze estima-
tion. For this we incorporate our gaze estimation pipeline
from AVA-LAEO into the current state-of-the-art visual tar-
get estimation network [1] (termed “VATnet” here) and
evaluate its performance. Next, for the task of physically
unconstrained gaze estimation, we provide additional ab-
lation experiments (besides those in Sec. 4.1 of the main
paper), including for the aleatoric and symmetry losses; for
various formulations of the pseudo gaze and geometric 3D
LAEO losses; and for the utility of the geometric 2D LAEO
loss. We show more performance details of the various
training datasets used in the cross-dataset experiments (in
Sec. 4.2 of the main paper) for different gaze yaw angles.
Finally, we provide more details of pre-processing the CMU
Panoptic and AVA-LAEO datasets, and analyze the reliabil-
ity of the 3D gaze labels extracted from real-world LAEO
data.

A. Weakly-Supervised Visual Target Estima-
tion

Chong et al. [1] proposed a novel spatio-temporal archi-
tecture (VATnet), which predicts fixation targets of subjects
within a given video frame. In this experiment, we explore
if LAEO-based weakly-supervised 3D gaze helps to esti-
mate more accurate visual targets as well. We use LAEO
3D gaze estimation as an auxiliary task while training net-
works for visual target estimation in a semi-supervised set-
ting. This provides additional weak gaze annotations from
the noisy, in-the-wild AVA-LAEO dataset.

*Rakshit Kothari was an intern at NVIDIA during the project.

Figure 1: A simple modification of the VATnet architec-
ture [1]. Two fully connected layers serve as an auxiliary
task to predict 3D gaze from the head conditioning branch
of the original VATnet architecture. The LAEO losses (see
Section 3.3 in the main paper) on the predicted gaze vectors
for the AVA-LAEO dataset are then used to fine-tune the
final layer of the head conditioning branch. Facial features
extracted from the fine-tuned head conditioning branch then
proceed to VATnet for the visual attention target prediction
task. Please refer to Chong et al. [1] for a full description of
their network architecture.

Method VATnet comprises of four modules, a head con-
ditioning branch, which generates gaze-related features
from an input head image; a main scene branch, which gen-
erates scene-related feature maps based on the saliency of
an input scene image; a recurrent attention prediction mod-
ule, which fuses gaze- and scene-related features across
contiguous video frames; and lastly, a heatmap condi-
tioning branch, which generates a visual target prediction
heatmap (see Fig. 1). VATnet’s head conditioning branch is
a ResNet-50 module initialized with weights from a gaze
estimation network trained on the EYEDIAP dataset [2].
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AUC (↑) L2 Dist (↓) out-of-frame
AP (↑)

VAT 0.846 0.141 0.861
VAT + AVA-LAEO 0.865 0.136 0.855

Human 0.921 0.051 0.925

Table 1: Improvements to the VATnet baseline [1] by
adding weak supervision from the AVA-LAEO dataset us-
ing the best configuration of LAEO loss functions described
in Table 1 of the main paper.

Utilizing this gaze estimator, Chong et al. [1] demonstrate
state-of-the-art results on a new dataset called VisualAtten-
tionTarget, which comprises of annotated gaze target loca-
tions on the image plane. In our experiments we jointly
train this VATNet architecture with both the training set of
the original fully-supervised VAT dataset and with the AVA-
LAEO dataset. To do so, we modify the VATNet architec-
ture and add two fully connected layers to the output of the
head conditioning branch, and train it to additionally predict
weak 3D gaze vectors derived from the AVA-LAEO dataset
(see Fig. 1). We train with samples from AVA-LAEO using
the LAEO loss LSYM + L2D

geom + L3D
geom + Lpseudo

G only.

Data Preparation VATnet requires three input modali-
ties. First, it requires a full scene image with known head
bounding box locations for each annotated subject. Next, it
requires a 2D pixel gaze target location on the image plane
for the said subject and finally, an in-out label, which in-
dicates if the target is within or out of a frame. For this
task, to use the LAEO data we input the same 7-frame se-
quence centered around a LAEO annotation. We treat the
2D cyclopean eye P 2D (see the sub-section titled “Scene
Geometry Estimation” within Sec. 3.3 of the main paper) of
subject B as the target for subject A and vice versa for sub-
ject B. The nature of the AVA-LAEO data ensures that all
target locations are within an image frame and we assume
this to be the default in-out ground truth state. We do not
pre-process or augment the AVA-LAEO data and directly
re-train Chong et al.’s original implementation of VATnet
with the two datasets with minimal modifications.

Results Following Chong et al. [1], we evaluate the area
under the curve (AUC) for correct target location predic-
tion (within a pre-specified distance threshold on the image
plane), the L2 distance between the predicted and ground
truth target locations in the scene and the out-of-frame pre-
diction’s average precision (AP). We report the scores on
the VAT test dataset, averaged across training epochs 2-30,
both for the author’s original method [1] and our proposed
modification. Table 1 shows the benefits of jointly training
with the AVA-LAEO and VAT datasets. We notice an im-
provement in the AUC and L2 distance metrics for visual
target prediction. These encouraging results suggest that
weak supervision from noisily-labeled in-the-wild LAEO

Temporal Static

Frontal face
crops ◦

All head
crops ◦

Frontal face
crops ◦

All head
crops ◦

Pinball 10.38 13.77 11.4 15.62
Aleatoric 9.8 13.65 11.14 15.24

Pinball+Lsym
10.05 13.37 11.04 15.35

Aleatoric+Lsym
9.79 12.94 10.94 15.07

Table 2: Summary of performance gain by employing an
aleatoric gaze loss (described in Sec. 3.3, “Aleatoric Gaze
Loss” of the main paper) and the effects of incorporating
a symmetry constraint (described in Sec. 3.3, “Symmetry
Loss” of the main paper). All values reported are angu-
lar gaze errors in degrees (lower is better) for the fully-
supervised within-dataset experiment on Gaze360.

data can potentially also aid other gaze-related tasks, e.g.,
visual attention target prediction besides 3D gaze estima-
tion. We also note a reduction in the out-of-frame AP, which
is not surprising as all target locations for a given subject in
the AVA-LAEO dataset lie within image bounds and hence
it provides labels for only one (i.e., the in-frame) class.

B. Additional Ablation Studies
For the task of physically unconstrained gaze estimation,

we provide additional ablation experiments besides those in
Sec. 4.1 of the main paper.

B.1. Aleatoric and Symmetry Losses
In the normalized eye co-ordinate system [5], where the

z axis passes through the 3D cyclopean eye center of each
face, constraining gaze yaw prediction to be equal and op-
posite for a face and its symmetrically flipped version, is
an intuitive constraint, which can be employed during train-
ing. Our experiments show that using this symmetry con-
straint and the aleatoric gaze loss improve the baseline per-
formance of [5] on both variants of the author’s original
fully-supervised ResNet-18-based gaze estimator (temporal
and static), which use the pinball gaze loss. Table 2 shows
a detailed comparison of the effects of adding the symme-
try constraint to the pinball (from [5]) and aleatoric (ours)
loss functions for a within-dataset fully-supervised exper-
iment on Gaze360. Here we train our gaze network with
Gaze360’s entire training set (with its gaze labels) and eval-
uate it on Gaze360’s test set. Note that the symmetry con-
straint improves the performance of both the pinball and
aleatoric losses.

We also observe that for this within-dataset experiment,
the aleatoric loss consistently outperforms the pinball loss
and that the combination of the aleatoric and symmetry
losses results in the best overall performance (Table 2).
In addition to this, we observe that the aleatoric loss also
outperforms the pinball loss in the cross-domain purely
weakly-supervised experimental setting. By replacing the



Figure 2: Gaze360 test error (in degrees) as a function of
gaze yaw for the fully-supervised within-dataset experimen-
tal on Gaze360. Note that gaze error increases as faces turn
away from the camera.

aleatoric loss with the pinball loss (from [5]), our best tem-
poral network (trained with all the LAEO losses and cor-
responding to the last row of Table 1 in the main paper),
generalizes less effectively to Gaze360. For AVA-LAEO its
gaze error of 26.3◦ increases to 28.7◦ and for CMU Panop-
tic it increases from 25.9◦ to 26.1◦.

B.2. Variants of Lpseudo
G

The LAEO activity provides us with the constraint that
the predicted 3D gaze from subjectsA andB in LAEO must
be equal and opposite in a shared camera coordinate sys-
tem. There are multiple ways in which we can implement
this constraint. As an ablation, we explore two additional
formulations for this LAEO constraint besides the one de-
scribed in Sec. 3.3 titled “Pseudo Gaze LAEO Loss” of the
main paper: a) naive LAEO enforcement and b) using the
most confident gaze prediction for a pair of faces in LAEO
as the pseudo ground truth gaze direction. In either exper-
iment, we replace the Lpseudo

G loss in our best (temporal)
purely weakly-supervised cross-dataset configuration that is
trained with all the LAEO lossesLsym+Lpseudo

G +L2D
geom+

L3D
geom (corresponding to the last row in Table 1 of the main

paper) with one of these losses.

Naive LAEO Enforcement Here we naively enforce the
predicted vectors ĝ3DA and ĝ3DB to be equal and opposite by
minimizing the resultant angular cosine distance between
ĝ3DA and−ĝ3DB . In this constraint, predictions for both faces
could be modified by the network. In order to achieve this,
our gaze estimation network could either improve its predic-
tion for the difficult face in a LAEO pair (see Fig. 2, which
show that gaze prediction error increased with extreme gaze
angles), or it could deteriorate its prediction for the clearer
frontal face to satisfy this naive LAEO objective. Our ex-
periments show a reduction in cross-dataset performance on
the entire Gaze360 test set (CMU Panoptic: 25.9◦ → 28.2◦

and AVA-LAEO: 26.3◦ → 26.9◦) with this naive variant of
the LAEO loss versus the one described in Sec. 3.3 of the
main paper.

Confident Gaze Prediction In this experiment, we regard
the more confident of the two predicted gaze vectors for a
LAEO pair as the pseudo ground truth g3Dpseudo gaze label
as opposed to their weighted average used in Sec. 3.3 of
the main paper. That is, g3Dpseudo = ĝ3DA if WA ≥ WB

(from Eq. 1 in the main paper) and vice versa for subjectB.
Our experiments show a reduction in cross-dataset perfor-
mance with this variant of the LAEO pseudo ground truth
label as well versus the one used in Sec. 3.3 of the main
paper (CMU Panoptic: 25.9◦ → 27.24◦ and AVA-LAEO:
26.3◦ → 27.8◦).

B.3. Variant of L3D
geom

We also compare the performance of our L3D
geom loss

formulation used in Sec. 3.3 of the main paper to a con-
ventional 3D angular cosine loss, whose ground truth is
assumed to be along the line joining LAEO subjects’ es-
timated 3D eyes. Empirically, we observe that replacing
L3D
geom with a cosine loss in our best (temporal) purely

weakly-supervised configuration (last row of Table 1 in the
main paper), results in consistently worse performance on
Gaze360 (CMU Panoptic: 25.9◦→ 30.0◦ and AVA-LAEO:
26.3◦ → 29.63◦).

B.4. Utility of L2D
geom

The 2D eye position on the image plane can be esti-
mated without depth ambiguity and is more reliable than
the 3D eye position. To quantify the contribution of L2D

geom

to the overall performance of our system, we add increasing
noise (z-only) as a ratio of the absolute ground truth depth
of the 3D eye positions to subjects under LAEO in the CMU
Panoptic dataset, train various purely weakly-supervised
configurations (as described in Sec. 4.1 of the main paper)
with and without L2D

geom and evaluate on Gaze360 (Fig. 3).
While we see gaze prediction accuracy deteriorate with in-
creasing depth noise, the inclusion ofL2D

geom constrains gaze
ambiguity and reduces the degradation of gaze estimates.
Besides this, we also observe that including L2D

geom makes
gaze predictions more consistent and reduces the standard
deviation of errors on Gaze360’s test set (CMU Panoptic:
27.0◦ → 23.7◦ and AVA-LAEO: 23.6◦ → 19.8◦).

C. Detailed Cross-dataset Performance
For the cross-dataset experiment described in Sec. 4.2

and Table 2 of the main paper, we additionally analyze
the variation in gaze errors with varying gaze yaw angles
on the Gaze360 test set. We consider the case of training
with (a) GazeCapture only (dashed curves in Fig. 4) or (b)
with GazeCapture and AVA-LAEO in (solid curves Fig. 4).
The corresponding curves for training with (a) ETH-XGaze



Figure 3: Purely weakly-supervised performance of CMU
Panoptic on Gaze360, with added relative depth noise (µ =
0, σ = {0.1, 0.3, 0.5}), when trained with different combi-
nations of LAEO losses (L3D

geom is always on). With the
L2D
geom loss included, performance degrades more grace-

fully on increasing depth noise versus without. Plots show
median values across 4 different training runs initialized
with different network weights.

only or (b) with ETH-XGaze and AVA-LAEO are shown
in Fig. 5. The blue curves show performance on the en-
tire Gaze360 test set, while the red curves are for its subset
containing frontal faces only.

The AVA-LAEO dataset exhibits a large distribution of
extreme gaze angles as the LAEO activity largely consists
of people with side profiles fixating at each other (see Fig. 1
and Fig. 2 in main paper and Fig. 7 in the supplementary
for examples). This conveniently augments datasets with
narrow gaze distributions, e.g., GazeCapture (dashed versus
solid curves in Fig. 4), which is largely concentrated about
gaze pitch and yaw values of zero (from Fig. 3 of the main
paper) and helps them generalize better to Gaze360. The
AVA-LAEO dataset also contains a large appearance vari-
ability because of being collected from in-the-wild videos,
which positively augments datasets collected indoors only,
e.g., ETH-XGaze (dashed versus solid curves Fig. 5) and
helps it generalize better to Gaze360 as well. On jointly
training either the GazeCapture or ETH-XGaze dataset with
AVA-LAEO, we see a significant boost in their performance
on all head crops from Gaze360, including faces with large
profile views (blue curves in Fig. 4 and Fig. 5). Inter-
estingly, adding the AVA-LAEO dataset improves cross-
domain performance of GazeCapture and ETH-XGaze on
Gaze360’s frontal face crops as well (red curves in Fig. 4
and Fig. 5).

D. Data Pre-processing
We first describe in detail how we pre-process the CMU

Panoptic (haggling activity subset) and the AVA-LAEO
datasets. Then we analyze the effect of the simplifying as-
sumptions that we employed to estimate scene geometry (as
described in Sec. 3.3 of the main paper) on the reliability of
3D gaze annotations derived from real-world LAEO data.

Figure 4: Reduction in gaze error on the Gaze360 test set
on jointly training with GazeCapture and AVA-LAEO. The
dashed curves are for training with GazeCapture only and
the solid ones are for jointly training with GazeCapture and
AVA-LAEO. Each curve represents the mean of samples in
bins 1.8◦ wide and the bins with 20 samples or less are dis-
carded. The vertical axis is represented in log scale. Lower
is better.

Figure 5: Reduction in gaze error on the Gaze360 test set
on jointly training with ETH-XGaze and AVA-LAEO. The
dashed curves are for training with ETH-XGaze only and
the solid ones are for jointly training with ETH-XGaze and
AVA-LAEO. Each curve represents the mean of samples in
bins 1.8◦ wide and the bins with 20 samples or less are dis-
carded. The vertical axis is represented in log scale. Lower
is better.

D.1. CMU Panoptic
The CMU Panoptic dataset contains 31 views captured

from high-definition cameras within a dome with available
accurate body/facial 3D landmark locations and camera in-
trinsic and extrinsic parameters. This enables us to compute
each subject’s head position and orientation with respect to
any scene camera. Such a convenient setup allows us to
quickly gather our own large-scale gaze dataset by lever-



Figure 6: Examples of discarded CMU Panoptic frames
from our experiments.

aging the LAEO constraint. However, this dataset does
not contain explicit information about the presence or ab-
sence of the LAEO activity in video frames. So we use
a semi-automatic procedure to label the video frames in it
with LAEO activity labels. We use the pre-trained Gaze360
static network [5] to estimate gaze for every subject from
multiple frontal views (i.e., if a given face is oriented within
±90◦ of a camera’s principal axis). These gaze estimates
are then transformed to world co-ordinates and their pair-
wise cosine distance is computed between every subject pair
present in a frame. A pair of gaze vectors for two subjects
are assumed to be under LAEO when their angular separa-
tion (with one of the vectors being inverted) from each other
and the 3D line joining their cyclopean 3D eyes is < 20◦.
A pair of subjects is treated to be in LAEO when at least
4 of its gaze pairs from multiple views are classified as be-
ing in LAEO. The nature of the haggling activity ensures
that only a single pair may ever exhibit LAEO. Frames with
none or multiple LAEO pair detections are removed from
the analysis.

We experience two corner cases: a) facial features of cer-
tain subjects can be blocked from view by another subject
in the scene and b) multiple subjects may appear within the
same head bounding box (see Fig. 6). To mitigate this is-
sue, we first compute a facial bounding box surrounding
a subject’s ears, eyes and nose keypoints. Next, we com-
pute a bounding box around every subject’s body. Views
with facial bounding boxes overlapping with body bound-
ing boxes of other subjects (i.e., with a bounding box IOU
score ≥0.01) are discarded from the analysis. This in-turn
results in missing gaze values in the central±15◦ gaze pitch
and yaw distribution region (see Fig. 3 in the main paper).

D.2. AVA-LAEO
The availability of 3D head poses and landmarks is a

vital requirement for computing our LAEO losses. These
annotation, however are not available in the AVA-LAEO
dataset. We utilize dense 2D-3D correspondence predic-
tions derived from DensePose [4] to fit the SMPL 3D head
model to every detected subject within a LAEO annotated
frame from the AVA training set [3] with LAEO annotations
provided by Marin-Jimenez et al. [6]. To improve computa-
tional efficiency while deriving these correspondences, we
utilize up to 1,000 2D pixels detected by DensePose, which
belong to a subject’s head. To ensure that every detected
facial region is well represented while computing 3D head

Figure 7: (Top) a positive and (bottom) a negative exam-
ple of scene geometry reconstruction from the AVE-LAEO
dataset. Notice the incorrect 3D head placement for the
right most subject in the bottom example with respect to z
depth. The subject on the right is clearly closer to the cam-
era (in terms of z depth) than the subject on the left, but is
incorrectly estimated as being further from it. This, in turn,
results in noisy 3D gaze labels.

pose, we uniformly sample 2D pixels based on their dis-
tance from the mean 2D head location. However, incor-
rect head-pose estimates due to incorrect 2D-3D correspon-
dences are inevitable. See Fig. 7 for a positive and a nega-
tive example of head pose fitting, where the latter results in
noisy gaze labels for the AVA-LAEO dataset.

D.3. Reliability of LAEO 3D Gaze Labels
When scene geometry is unknown (e.g., in real-world

LAEO datasets), 3D gaze labels derived from LAEO are in-
deed noisy. We introduce various constraints while training



our system to counter this issue, and show results on both
controlled (CMU Panoptic) and in-the-wild (AVA-LAEO)
datasets. Yet, as a rough estimate, we compare the angular
separation between 3D gaze derived from the approximate
scene geometry (described in Sec. 3.3 of the main paper)
and its ground truth values using a subset of 3495 images
from the CMU Panoptic dataset. On average, we observe a
14.8◦ gaze label error and an absolute relative depth differ-
ence of 0.3 between the ground truth and estimated subject
depths when both 2D cyclopean eye points and the subjects’
z depths are estimated, and the focal length is assumed to
be the largest image dimension. Replacing with accurate
focal length reduces gaze label error to 10.1◦ and using ac-
curate 2D cyclopean eye centers further reduces it to 8.84◦.
Additionally, the assumption that people look at each oth-
ers’ 3D eye centers introduces < 4.3◦ gaze error for sub-
jects located > 500mm apart. These label errors are sig-
nificantly smaller than those encountered in cross-dataset
(∼ 30◦ from [7]) and semi-supervised (> 25◦ from Fig. 4 of
the main paper) training for Gaze360 making LAEO data a
reliable source of supervision for 3D gaze learning in phys-
ically unconstrained settings.
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