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A. Standard Quantization

In this section we discuss standard quantization based
on QPP. The following materials were not included in the
paper to save space for the experiment analysis and expla-
nation. Moreover, the D+S approach highlights the advan-
tages of QPP stronger compared to standard quantization.
More precisely, we show that QPP is also effective for stan-
dard quantization(it will be described in the next subsec-
tion A.1) to emphasize the generality of our approach. All
results are obtained on the same sets of the datasets and
the models (see Table A.2) with the same experiment setup
(same places of QPPs).

As well as the D+S approach described in the paper, the
standard quantization can use an asymmetric quantization
scheme (what is also known as the quantization with offset)
based on α-quantile statistics. So, QPP’s prediction target
for both quantization methods is the α-quantile. The dif-
ference is only in a value of α-quantile: D+S operates with
values like 0.99 (1% density) or 0.97 (3% density) or even
lower, and the standard uses the value larger than 0.999 (see
Table A.2).

Most NN inference frameworks use the static standard
quantization approach. That is why it is crucial to provide
such experiments.

A.1. Definition

Feature maps. The standard approach to quantize acti-
vations requires clipping and round operations:

x̃ = quant(x,Ql) =

⌊
clip

(
x

sl
, al, bl

)⌉
sl, (A.1)

where b·e denotes the round operation. We choose quanti-
zation boundsQl = (al, bl) as QPs at each l-th layer (al and
bl represent bottom and upper thresholds). The formula A.1
describes the so-called Fake quantization - the discretiza-
tion of floating point variables used for emulation of integer
arithmetic. Here for simplicity we are omitting the offset
usually used. We assume equal quantization steps sl with

bit-width k of quantized values defined as follows:

sl =
bl − al

2k − 1
. (A.2)

QPs Ql values have a strong influence on the quality of the
quantized model. Poorly selected they lead to an increase in
the quantization error because either the quantization step is
too large or the values of outliers change too much. Moti-
vated by this observation, in our experiments we consider
α-quantile value of tensor of activations as clipping values.
Optimization is done via greedy search of α, which leads to
best quality. Usually al and bl are estimated by the mini-
mum and the maximum of the activations correspondingly.
Our formulation doesn’t exclude this opportunity: when al-
pha tends to one, QPs Ql becomes equal to min and max
values respectively.

Weights. Our work focuses on predicting the quantiza-
tion bounds of activations because they vary between sam-
ples in contrast to the weights quantization, which can be
estimated off-line without a calibration set. In other words,
the weights quantization is out of our research scope. So,
for simplicity, we used the same quantization function A.1
to quantize weights as one for activations and the following
quantization step:

slw =
max(W l)−min(W l)

2t − 1
. (A.3)

Bit-width. Going forward, we use 8 and 4 bits for
weights and activations correspondingly (t = 8, k = 4).
We discuss in detail the bit-width in Section A.3.

A.2. QP Estimation Stage

Dynamic. Let’s settle why the dynamic quantization is
not efficient (see Figure A.1). Firstly, one needs to run the
32-bit data through the CPU to obtain the QPs (min/max or
α-quantiles). Secondly, we have to scan the data again to
quantize data to int8 (or int4). Usually, the size of a tensor
of feature map exceeds a CPU cache. Hence, the scanning
requires interaction with RAM, which is an expensive oper-
ation in terms of both power and time consumption.

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#8893

CVPR
#8893

CVPR 2020 Submission #8893. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table A.1. Inference time of different implementations of convolutions: float16 - full-precision convolution via BOLT; Int8 - quantized
convolution via BOLT. Convolution size (KxKxF): 3x3xC. CPU: Kirin 980 (Cortex A76, 1 thread).

Activation
size

flloat16
conv, ms (%) Inference time, ms (%) Quantile

Min/Max Quant int8 conv Total
56x56x64 3.23 (184%) 0.03 (2%) 0.19 (11%) 1.76 (100%) 1.98 (113%) 0.22 (12%)
112x112x64 13.53 (188%) 0.37 (5%) 0.75 (10%) 7.18 (100%) 8.30 (116%) 0.78 (11%)
224x224x64 62.17 (200%) 0.71 (2%) 2.98 (10%) 31.03 (100%) 34.72 (112%) 2.99 (10%)

Figure A.1. Dynamic quantization scheme. The quantization requires running the 32-bit data through the CPU.

If the inference time of int8 convolution is taken as a unit,
then the min/max estimation costs 2-5%, and α-quantile
costs 10-12% (see Table A.1). In the case of min/max, it is
possible to fuse its estimation to previous convolution (like
it was done in the BOLT framework) and avoid this over-
head. Unfortunately, this cannot be done for the α-quantile
measuring.

The main disadvantage of dynamic scheme is the ab-
sence of an opportunity to fuse the quantization operation
(10-11% overhead) with the previous convolution.

Thus, the cumulative overhead of α-quantile estimation
(12%) and the quantization (11%) can reach 25%, making
it not advisable.

Static. If all QPs are known before inference, we can
fuse convolution and quantization operations and eliminate
these overheads (see Figure A.2) but typically it leads to
higher quality degradation compared to dynamic method
(see Section A.3).

Static with QPP. QPP allows one to calculate parame-
ters once (several times in the case of extra QPPs). There-
fore, one can significantly reduce the time for QPs evaluat-
ing but almost completely preserve the quality compared to
the dynamic approach. In next Section A.3 we show that.

A.3. Experiments

We examined QPP’s performance for 4 tasks: classifica-
tion (ResNet18 and ResNet34 models [6] on ImageNet [5]
dataset), segmentation (HRNetV2-W18 1 model [9, 10] on
CityScapes dataset [4]), facial landmark (HRNetV2-W18
model on COFW [3], WFLW [11], 300W [7] datasets), and
super-resolution (ESPCN [8] on Vimeo [12], Set5 [2] and
Set14 [13] datasets). More precise experiment set up can be
found in Table A.2.

The pipeline for every experiment is the same and can
be described as follows. In our experiments we consid-
ered α-quantiles of activations as clipping values, i.e. QPs.
The particular sub-optimal quantiles were chosen for each
NN and for each dataset correspondingly as results of grid
search. Such simple yet efficient approach allowed us to
achieve a small quality drop in all experiments, and in case
of classification allowed to achieve comparable results with
ACIQ (w/o bit allocation and bias-correction)[1]: 66.6 %
for ACIQ and 66.9 % for our dynamic method.

We reduced the bit-width of activations to 4 bits to high-
light the differences between the methods of QPs estima-
tion. For example, for the considered models and the
datasets 8-bit models show no accuracy drop.

1https://github.com/HRNet
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Figure A.2. Static quantization scheme. There is no overhead on a QP estimation and a quantization.

Table A.2. Experiments set up

Task Models Datasets
Quantized
head

Quantized
tail

QPPs number
(QPPs positions)

QPP train
samples

Optimal
quantile

Classification
ResNet18,
ResNet34 ImageNet No No 1 QPP (first ReLU) 30000 0.9997

Segmentation HRNet CityScapes No No
4 QPPs (first ReLU,
Tr. Layer 1,2,3) All 0.9993

Facial
Landmark HRNet

COFW,
WFLW,
300W

No No
4 QPPs (first ReLU,
Tr. Layer 1,2,3) All

0.9991
0.9991
0.9993

Super -
Resolution ESPCN

Vimeo,
Set5,
Set14

Yes Yes 1 QPP (NN’s input) 10000 0.9998

Table A.3. Performance of quantization schemes vs ground truth (weights: 8 bit, activations: 4 bit)

3*Scheme
Classification

Acc Top 1, % /
Acc Top 5, %

Segmentation
mIoU, %

Facial Landmark
NME, % /
FR(0.1), %

Super-Resolution
PSNR, dB

Imagenet CityScapes COFW WFLW 300W Vimeo Set5 Set14
ResNet18 ResNet34 HRNet HRNet ESPCN

FP32
69.76 /
89.08

73.30 /
91.42 70.26 3.45 /

0.2 4.6 / 3.12 3.85 /
0.34 34.06 30.74 27.06

Dynamic
66.85 /
87.22

70.34 /
89.70 66.14 3.7 /

1.18
4.95 /
4.56

4.01 /
0.5 33.45 30.39 26.84

Static
66.65 /
87.14

70.27 /
89.53 66.23 3.77 /

0.79
4.99 /
5.00

4.15 /
1.00 33.31 30.25 26.75

QPP
66.90 /
87.23

70.30 /
89.69 66.21 3.69 /

0.59
4.96 /
4.88

4.12 /
0.5 33.42 30.36 26.84

We presented the results of our experiments on full quan-
tization in two tables. In Table A.3 we demonstrate the
scores of the same models computed for ground truth labels.
In three out of four experiments we see that dynamic quanti-
zation is superior to static quantization (except the segmen-
tation task). In all experiments one can also observe that
the QPP-based scheme results are closer to dynamic quanti-

zation. The typical behavior of methods in relation to each
other we illustrated by the example of ResNet18. Here we
see that the QPP-based scheme lets us increase accuracy by
0.25% compared to the static approach and almost repeat
the result of dynamic quantization. If we consider the top5
accuracy, we can see that the scores of dynamic quantiza-
tion and QPP scheme differ by only 0.01%, which indicates

3
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Table A.4. Performance of quantization schemes vs FP32 models (weights: 8 bit, activations: 4 bit)

3*Scheme
Classification
Acc Top 1, %

Segmentation
mIoU, %

Facial Landmark
NME, %

Super-Resolution
PSNR, dB

Imagenet CityScapes COFW WFLW 300W Vimeo Set5 Set14
ResNet18 ResNet34 HRNet HRNet ESPCN

Dynamic 83.616 84.716 80.52 1.52 2.14 1.78 43.48 41.60 40.71
Static 83.120 84.396 80.87 1.58 2.33 1.99 42.74 40.44 40.11
QPP 83.630 84.432 80.75 1.51 2.22 1.87 43.25 41.32 40.48

Figure A.3. QPPs positions in HRNet2

high stability of the quantized NN’s output.
Additionally, we want to note that the paper addressed

to improve the post-training quantization methods, which
main purpose is to obtain the quantized NN which is able to
produce the same outputs as the NN in full-precision format
given the same inputs. Thus, we provide the scores com-
puted between outputs of quantized NNs and outputs of full-
precision NNs in Table A.4. Here we see the same picture
as in the ground truth case. For the ResNet18 model, we
have an increase of 0.5% in accuracy compared to the static
approach. This also proves that the properly constructed
QPPs can predict quantization parameters for various NNs
and datasets well.

B. QPP Positions
In this section we discuss QPP positions in NN. First

of all, we would like to note that, in most cases, the first
convolutional layer of the NN is not quantized. Thus, there
is no sense in placing QPP in front of it and estimating QPs
from the NN’s input. Therefore, in our experiments (except
Super-Resolution models, where all layers were quantized)
we placed the QPP after the first activation function and
predicted subsequent QPs based on the tensor of activations
(see Figure B.4). This approach can significantly improve
the quality of predictions. 3

Also, deep models require several QPPs to preserve qual-
ity of predictions. For segmentation and facial landmark

3Original picture of HRNet: https://jingdongwang2017.github.io/
/Projects/HRNet/

Figure B.4. QPP after first ReLU

tasks we used HRNet as a baseline model, which has big
amount of layers. Therefore, we decided to place 4 QPPs
in these models. As it was discussed above the first QPP
is placed after the first ReLU. Other three QPPs are placed
before first convolutions of every new branch (see Figure
A.3).

C. Feature Selection

We would like to note that the regressor can’t have high-
dimensional feature space as it strongly affects computa-
tional complexity. So one needs to reach the highest pos-

4
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Table B.5. Power consumption: float16 - full-precision convolution via BOLT; Int8 - quantized convolution via BOLT; D+S convolution -
1% density. Activation size (HxWxC): 56x56x64. Convolution size (KxKxF): 3x3x64. CPU: Kirin 980 (Cortex A76, 1 thread).

Metric float16 Conv Min/Max Quantile Dynamic Int8 Conv Total Dynamic D(int8)+S(float16) Conv
mAh 0.603 0.001 0.020 0.295 0.355
% 100% 0.1% 3% 49% 59%

Figure C.5. QPP MSE vs Number of Features (ResNet34)

sible quality of predictions while keeping the feature space
small. The solution lies in the proper feature selection pro-
cedure. To start with, we observed that α-quantiles below
0.9-quantile are fairly stable from sample to sample and
therefore have a big correlation, which leads to the poor
performance of linear regressor. This is due to the type
of distribution and the large size of activations. Moreover,
when extra QPP is used, the input distribution of this QPP
is slightly changed by quantization. Therefore, linearly de-
pendent features can lead to unpredictable results for these
QPPs.

To estimate linear dependence between features and
QPs we performed F-test. We choose the 44 different α-
quantiles, mean, max, min, std, absolute max values of in-
put tensor as baseline feauture space. Then we selected k
best features and trained regressors on them. The results for
different k are summarized in Figure C.5. The Y-axis rep-
resents the MSE of predictions on train subset normalized
to the MSE of QPs obtained by the static quantization with
averaging. One can see that the increase in the number of
features has almost no effect on the quality of predictions.
That is why in our experiments we used the feature space
consisting of 3 α-quantiles, mean and max values of input
tensor.

D. Power Consumption

In this paper we discussed inference time and quality of
the quantized model as the main characteristics of quanti-
zation algorithm. But power consumption is also an essen-
tial parameter for industry application. We computed it on
ARM CPU Kirin 980 (Cortex A76, 1 thread) and presented
results in Table B.5. The following quantization approaches
were considered: 1) FP16 convolution via BOLT Frame-

work, 2) Int8 convolution via BOLT Framework, 3) Dense +
Sparse convolution (our implementation). One can see that
calculation of min/max or quantile of tensor of activations
requires low power (0.1% and 3% respectively). Therefore,
using a dynamic approach instead of a static brings almost
no additional energy costs. In addition, D+S with a density
of 1% requires 59% of the power consumption of the FP16
model, which is 10% more power than for dynamic quanti-
zation of int8. From our point of view, this is an acceptable
level of costs, since D+S allows one to achieve almost FP
quality of the quantized model and save 41% of energy.
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