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A. Expression of the field generator for implicit
deformation modules

A.1. Generic solution

Let Y = Rn and Sq ∈ L(V,Rn) and Aq ∈ L(H,Rn)
continuous linear operators. For any h, since J(v) = |v|2V +
1
ν |Sq(v)−Aq(h)|

2 is convex and coercive, we have a unique
solution ζq(h) that can be calculated using the lagrangian
L : V × Rn × Rn → R

L(v, w, λ) = |v|2V +
|w|2

ν
+ 2λT (Aq(h)− (Sq(v) + w))

giving from the Euler-Lagrange equations ∂vL = ∂wL =
∂λL = 0 the equations ζq(h) = KS∗qλ, w = νλ and
(SqKS

∗
q + νI)λ = Aq(h). We deduce λ = (SqKS

∗
q +

νI)−1Aq(h), ζq(h) = KS∗qλ and cq(h) = λTSqKS
∗
qλ +

ν|λ|2 = λT (SqKS
∗
q + νI)λ = Aq(h)

T (SqKS
∗
q +

νI)−1Aq(h). The invertibility of the operator SqKS∗q + νI
is deduced from the surjectivity of Sq and the positivity of
SqKS

∗
q .

A.2. Implicit module of order 0

Let us detail this computation for an implicit deforma-
tion module of order 0. In this case, the space of geo-
metrical descriptors is O = (Rd)N and the space of con-
trols is H = (Rd)N . The constraint operator is Sq :
v ∈ V 7→ (v(q1), . . . , v(qN )) ∈ (Rd)N and the lin-
ear operator Aq is defined by Aq(h) = (Kq + νId)h.
Then KS∗q =

∑
iK(xi, )̇hi so SqKS

∗
q = Kq,qh, and

λ = (SqKS
∗
q + νId)−1Aq(h) = h. In addition, the cost

is then cq(h) = hT (Kq,q + νId)h. Note that for the op-
erator Sq to be surjective, we need to consider geometrical
descriptors = (x1, . . . , xN ) such that xi 6= xj for j 6= i
(which will be the case in practice).

B. IMODAL

This framework is implemented in IMODAL (Implicit
Modular Object Deformation Analysis Library), in Python,
using the librairies PyTorch[16] for automatic differentia-
tion and KeOps [7] to avoid memory overflow in GPU com-
putations. It is a modular implementation in the sense that it
relies on several abstract classes that one can combine in or-
der to design a deformation model adapted to the observed
data.

B.1. Deformation Modules

This library relies on the abstract class
DeformationModules which implements the no-
tion of deformation module as defined in Definition 1. A
large variety of deformation modules (in particular the ones
presented in Section 2.3) are implemented as subclasses
of the abstract one DeformationModules. In order
to use them, one only needs to specify their specific
parameters such as the scale σ of the scalar Gaussian
kernel Kσ (examples of Section 2.3.1, 2.3.2, 2.3.3). In the
specific case of implicit modules of order 1 (Section 2.3.3),
it is necessary to specify the growth model operator,
h 7→ (Di(h))i∈I , namely a (growth model) tensor C of
size N × d × p with N the number of points on which the
field has to be constrained, d the dimension of the ambient
space and p the dimension of the control space so that
Di(h) = diag(C[i]h) for 1 ≤ i ≤ N .

The main attributes of the DeformationModules
class are the control h (implemented as a tensor) and the
geometrical descriptor q. This latter is implemented via a
class called Manifold which is in particular defined via
the way vector fields can act on it (defining the infinitesimal
action v · q). Unlike the parameters defining the deforma-
tion modules, these attributes evolve during the integration



of the shooting equation 4.
An important function of the module class is

field generator which generates, given the cur-
rent values of geometrical descriptor q and control h, the
vector field ζq(h).

The combination of deformation modules (Defini-
tion 2) is implemented via a particular subclass of
DeformationModules, named CompoundModule,
which is defined from a list of DeformationModules.
This CompoundModule subclass allows to build easily
complex deformation models as the superposition of sev-
eral simple ones.

B.2. Data

Several types of data can be used such as point clouds,
unparametrized curves, unparametrized meshes and images
(the interpolation of images is based on the code developed
in Deformetrica [6]), they are implemented as subclasses of
the abstract Deformable class. Each one has a function
which generates the corresponding silent deformation mod-
ule (see Section 2.3.4 and Remark 5) so it does not need to
be defined manually.

Several attachment terms are defined as subclasses of
the abstract Attachment such as Euclidean distances for
point clouds, varifold attachment [8] (based on the code
developed in KeOps [7] and Deformetrica [6]) for un-
parametrized curves and meshes, and L2 distance for im-
ages. In the case where the observed data is formed of sev-
eral parts (for example a curve and a point cloud such as in
the Example 3.1), it is possible to consider them both simul-
taneously, the total attachment term being then a weighted
sum of several ones (each corresponding to one part).

B.3. Models

The class RegistrationModel is the keystone
allowing to perform a registration using a chosen deforma-
tion model. It is initialized with lists of Deformables
(coding for the observed data), Attachment (defin-
ing the attachment functions for these data) and
DeformationModules (defining the deformation
model). This class enables to compute, given target
Deformables and initial values for the geometrical
descriptors and momenta of the deformation modules,
the functional 5. In order to minimize this functional, a
Fitter class is created from RegistrationModel
and runs the optimisation. It interfaces most PyTorch and
Scipy optimizers along with a gradient descent with linear
search optimization algorithm.

It is possible to estimate the parameters of the defor-
mation modules with a key-word other parameters
in RegistrationModel. It is also possible to add a
callback function that is evaluated before model evaluation.
This allows us to estimate some parameters of the model as

functions of meta-parameters which can be estimated. This
is for instance used in Section 3.1 in order to estimate the
growth factor as a polynomial of the point coordinates (the
parameters of the polynomial are estimated, not directly the
growth factor).

B.4. Utilities

In order to facilitate the definition of the deformation
model, several functions from the Utility toolbox can
be used. In particular, it is possible, from a shape (curve
in 2D or mesh in 3D for instance) to define automatically
a regular grid of points around the shape. This is particu-
larly useful to define the geometrical descriptors of implicit
deformation modules.

B.5. GPU

It is possible to choose to run the code on CPU or on
GPU (using KeOps [7] to avoid memory overflow if neces-
sary and accelerate computations).


