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1. User Study Analysis

We conducted a user study to quantitatively compare
our lip-sync and perceptual quality against the state-of-the-
art audio-driven frameworks of Wav2Lip [9], NVP [11],
IJCV’19 [13] and TBE [3]. In the study, N=35 raters were
each shown a total 29 sample clips consisting of synthetic
and real videos. For competing methods, we used their re-
leased videos (NVP, TBE) or generated results with their
pre-trained models (IJCV’19, Wav2Lip). The raters were
primarily drawn from a pool of subjects without research
expertise, supplemented with a minority (N=14) who were
researchers. The subgroup of researchers included some
having familiarity with computer vision topics but none
were expert on speech-driven animation. The raters were
asked three questions: Q1: Is the video real or fake? Q2:
Rate the quality of the lip-sync, i.e. how well does the mo-
tion of the lips match the audio, on a 3-point (discrete) scale
(poor, acceptable, great). Q3: Rate the picture quality,
e.g. naturalness, resolution, and consistency of the video,
on a discrete 5-point scale from 1-5 (poor-great).

Figure 2 shows, for each question, the percentage of
raters who selected each rating. We report the Mean Opin-
ion Scores (MOS) of the questions in Table 1. As is evi-
dent, among the competing methods, our method receives
the most favorable user ratings.

We performed a statistical analysis to confirm the signif-
icance of these ratings. For Q1 (only) we excluded the text-
to-speech results from consideration, since it was straight-
forward to judge the videos as “fake” due to the computer-
generated speech. Questions Q2 and Q3 are still relevant in
the text-to-speech case, however, since it is possible to rate
the quality of lip-sync and overall image naturalness even
when the voice is clearly synthetic.

The statistical analysis confirms that the differences in
real-fake ratings on Q1 are significant (Kruskal-Wallis test,
X2 = 158, p<1e-04), and our method outperforms the other
methods after adjusting for multiple comparisons (Tukey’s
Honest Significant Differences (HSD) IJCV p adj.= .003,
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Real 97.6 97.6 2.9540.03 4.55+0.13
1CvV’19 60.7 60.7 2.4540.11 2.4940.17
Wav2Lip 344 37.6 1.724+0.12 3.3540.20
NVP 444 50.0 1.80+0.13 3.7540.19
TBE 50.7 n/a 2.1740.17 4.07+0.26
Proposed 71.6 77.25 2.46+0.10 4.10+0.15

Table 1: User study analysis. Column 1: percentage of
“real” ratings by category. Column 2: percentage of “real”
ratings with text-to-speech driven results removed. Column
3: mean opinion score of lip-sync quality. Column 4: mean
opinion score of picture quality.

Wav2Lip p adj.<le-04, NVP p adj.<le-04). For Q2 the
differences in ratings are significant (Kruskal-Wallis y? =
279, p<le-04), and our method outperforms most com-
peting methods with statistical significance after adjust-
ing for the multiple tests (Tukey’s HSD TBE p adj.=
.035, Wav2Lip p adj.<le-04, NVP p adj.<1e-04), how-
ever the difference versus IJCV’19 is not significant. For
Q3 (Kruskal-Wallis y2 = 248, p<le-04) our method out-
performs most competing methods with statistical signifi-
cance after adjustment for multiple comparison (HSD IJCV
p adj.<le-04, Wav2lip p adj.<le-04, NVP p adj.= 0.04
however the comparison with TBE is not significant.

Figure 1: Screen shot from our user study.

These significance results for Q2 and Q3 (and in particu-
lar the lack of significance for IICV and TBE respectively)
are plausible given cursory examination of the videos. The
results of IJICV’19 show qood quality lip-sync but the over-
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Figure 2: Raw user study results. Q1: Percentage of real/fake ratings for each of the six video categories. Viewers believe our synthetic
videos (proposed) are real roughly two-thirds of the time. Q2: Ratings of lip-sync quality for the six video categories, expressed as
percentages. Our synthetic videos (proposed) are perceived as at least comparable to those of IICV while being clearly superior to other
competing methods in lip-sync quality. Q3: Ratings of picture quality for the six video categories, expressed as percentages. Here our
method greatly outperforms IJCV (and NVP and wav2lip) while being at least comparable to TBE. It can be seen that our method is the

best performer across the three questions.

all image quality is limited, thus explaining its good perfor-
mance on Q2 but poor performance on Q3. TBE operates
in part by re-mixing input video frames so it results in high
picture quality by definition (Q3), but its lip-sync quality is
poorer than our method and that of IJICV’19.

2. Comparison Notes on Text-based-Editing [3]

According to the user study, among the 3D model
based methods, Text-based-Editing (TBE) is the second-
best method (following our method). However, our frame-
work has some distinct training and inference time advan-
tages over TBE:

e TBE was trained on a training corpus of more than 1



hour of video recording. Our model was trained on ~7
minutes of data in this case.

e TBE assumes an accurate text transcript and uses
phoneme based alignment tools to align the text with
audio. In contrast, our model only requires a speech
signal as input.

e The average training time of TBE is 42 hours. Our typ-
ical training time is somewhere in between 3-5 hours.

e The inference speed of TBE is significantly slower.
This is mainly attributed to the costly viseme search
(~5 minutes for 3 words). Our method executes within
a few tens of milliseconds.

e TBE also relies on neural rendering for learning to
generate facial texture based on the illumination in the
training sequence. It is thus not apt for operating under
new ambient lighting without further retraining. Our
framework is capable of seamlessly adapting to novel
lighting conditions during inference.

3. Restrictions on comparison with Suwa-
janakorn et al. [10]

The work by Suwajanakorn et al. also involves training
a personalized talking face model. However, [10] only syn-
thesized results for a single person (the former U.S. presi-
dent Barak Obama), using hours of training video. While
our model is perfectly capable of similar synthesis, due to
our organization’s ethical/legal constraints we cannot train
on any living political personality. On this ground, we are
unable to directly compare our work with that of Suwa-
janakorn et al..

Although we cannot visually compare the two methods,
our framework offers the following advantages:

e Suwajanakorn et al. trained on 14 hours of weekly
President addresses recorded between 2009-2016. In
contrast, our framework just requires ~5 minutes of
training video.

e Suwajanakorn et al. demonstrate their outputs only un-
der the specific studio lighting setup of the President’s
office. Their texture generation network is not de-
signed with the goal of handling diverse ambient light-
ing. In contrast, our network seamlessly disentangles
and normalizes the effects of illumination, thereby en-
abling inference under diverse lighting conditions.

e Typical training data pre-processing time of Suwa-
janakorn et al. is around 2 weeks on 10 cluster nodes
of Intel Xeon E5530. In contrast our combined pre-
processing and training takes only about 3-5 hours on
a single system equipped with a single NVIDIA P1000
GPU.

4. Discussion on LSE metrics

We have used the official code release ! by the authors of
Wav2Lip for evaluating the automated LSE metrics, LSE-D
(lower is better) and LSE-C (higher is better). We faced two
issues while using this metric:

(a:) Even though user study suggest that the lip-sync qual-
ity of Wav2Lip is usually inferior to our model, the LSE
metrics are always better for Wav2Lip. We observed this
pattern over a range of different videos. LSE metrics are
computed from paired audio-visual representation coming
from a SyncNet [!] network. Wav2Lip also leverages a
SyncNet architecture and audio-visual representations as a
lip-sync loss during training. We hypothesize that since a
similar architecture is used both as a training loss and for
scoring, Wav2Lip may be biased to do particularly well on
this metric. A short communication with the authors also
revealed that they share a similar hypothesis. Thus, we re-
frained from reporting LSE metrics for Wav2Lip. However,
for other frameworks, the metric yields numbers consistent
with human evaluations of lip-sync.

(b:) The code sometimes fails to detect faces even under
normal illumination and thereby does not give LSE met-
rics. So, we could not report LSE metrics on all comparing
videos.

5. Leaving out Wav2Lip for Self-reenactment
Comparisons

In main paper, while comparing (Figure 10 ) methods for
self-reenactment tasks, we did not include Wav2Lip among
the competing methods. Along with the current audio,
Wav2Lip also feeds in the sequence of target frames with
the lip region unmasked. Since this is a self-reenactment
setting, the input target frames are the final expected out-
put from the network. So, Wav2Lip has an unfair advan-
tage over our method since our framework is entirely au-
dio driven. The masked (around lip region) target frames
are just utilized for pasting back synthesized lip region.
Thereby, we do not compare Wav2Lip for self-reenactment.
A similar advantage is also available to LipGAN [8] which
is a precursor to the framework of Wav2Lip.

6. Selecting Code Length for Audio and Previ-
ous Atlas

In this section we report studies to determine the code
length for encoding the current time step’s spectrogram and
previous time step’s predicted atlas. Since we wish to au-
tomatically determine acceptable settings of these parame-
ters, the study was conducted for a self-reenactment task in
which we have access to ground truth facial information.

Uhttps://github.com/Rudrabha/Wav2Lip
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Figure 3: Compa}ing our result against ground-truth. For each
subject, top row is the original sequence of frames, while the bot-
tom row is the resynthesized sequence.

For this study, we curated a custom dataset of sub-
jects selected from YouTube instructional videos, webcam
recordings, and studio conversations. The custom dataset
had around 10,000 audio-synchronized frames. Sample
frames and corresponding reconstructions from two such
subjects are shown in Figure 3.

6.1. Selection of Previous Atlas Code Length, N,

We conducted an ablation study to determine the length
N, of the latent code L{* ;. The code length governs the
contribution of the previous visual state to the current frame.
With increasing code length, the model starts to incorrectly
neglect the current audio input, instead basing its output
mostly on the previous state. In Table 2 we report the av-
erage metrics over different /V,. Note that N, = 0 signifies
a model trained without auto-regression. Both SSIM and
LMD improve when using auto-regression initially but de-
teriorate as we increase N,, with N, = 2 giving the best
results.

6.2. Selection of Audio Code Length, Ng

As mentioned earlier, we used a 32-dimensional vec-
tor for encoding the audio spectrogram. This number
was chosen by performing a parameter sweep over Ng €
{8,16,32,64,128} on our custom dataset. In Table 3 we
compare the SSIM and LMD metrics, averaged over the
subjects in the dataset. We observe that Ng = 32 yields
the most favorable performance. Hence, we use it as our
default choice when encoding the spectrogram.

Metric < AR Code Length: N, —

0 2 8 16
SSIM 0.92 0.93 0.901 0.889
LMD 2.00 1.88 291 2.16

Table 2: Parameter sweep for selecting latent code lengths,
N,, for encoding previous time step atlas based on LMD
(lower is better) and SSIM (higher is better) metrics. Best
results are marked in bold.

\ \ < Audio Code Length: Ng — \
Metric | 8 16 32 64 128

LMD 1.83 1.87 1.77 1.81 1.82
SSIM | 0907 0914 0917 0917 0910

Table 3: Parameter sweep for selecting audio latent code
length based on LMD and SSIM metrics. Best results are
marked in bold.

7. Network Architectures

In the main paper, we describe the architectures of the
audio encoder (which computes the latent code from audio
spectrograms) and the geometry decoder (that computes the
3D vertices from the audio latent code). Here, we describe
the additional network components of our model.

7.1. Texture Decoder Architecture

In Table 4 we present details of the texture decoder. The
input to the decoder is either a 32D vector (conditioned on
only audio latent code), or 34D (conditioned on audio la-
tent code + previous time step atlas latent code). This is
followed by a series of convolution and upsampling layers.

7.2. Auto-regressive Encoder Architecture

In our auto-regressive architecture, the previous atlas at
the previous time step is encoded as an additional latent
vector (along with the audio encoded vector). The output is
a latent vector of length N, = 2. The encoder architecture
for the autoregressive model is shown in Table 5.

Training by “Teacher Forcing”: As stated in the main pa-
per, during training we do not provide the actual previous
predicted atlas as an additional input to the auto-regressive
model, since this would entail a recursion in the network.
Instead we follow the Teacher Forcing [14] paradigm of
training the network with ground truth previous atlas.

In our initial experiments, we implemented a recursive
network and fed in the actual predicted previous atlas to
the model during training. The reconstruction quality of
that approach was worse than using ground truth atlases
during training (i.e. Teacher Forcing), however. Note that



during inference, the predicted previous atlas is fed to the
model, because the ground truth atlas is not known at that
time. Also, for predicting the first frame, we provide an ‘all-
zeros’ image as a proxy for previous frame because there is
no previous frame to start with. To handle this case, we
train the model by feeding it with ‘all-zeros’ for the previ-
ous atlas with a probability of 20%. This trains the model to
reconstruct the atlas both with and without the knowledge
of previous time step’s visual state.

8. Subject Details: GRID, CREMA-D and

TCD-TIMIT

For self-reenactment studies we performed experiments
on GRID [2], TCD TMIT [4] and CREMA-D [6] datasets.
Following the exact setting in [13], we select the same set
of 10 subjects (see Table 6) from each of the datasets).

9. Sharpness of Synthesized Lip Region

In main paper, we mentioned that our method is capable
of generating high quality lip-sync, and we objectively es-
tablished this with the commonly used CPBD metric. The
metric was evaluated on the entire face. While it is true
that the sharpness of the final composite full face is a pri-
mary factor of photo-realism, we also acknowledge that our
method benefits from copying the texture from upper part
of face from target frames.

Here we focus on determining the sharpness of only the
lower half of the face (below the nostrils). In Table 7, we
compare against Wav2Lip, LipGAN, NVP and TBE on the
user study videos. Even on the lower mouth region, our
method manifests better CPBD score across all competing
methods.

10. Applications

Our approach of generating textured 3D geometry en-
ables us to address a broader variety of applications than
purely image-based or 3D-only techniques, as discussed
here. Sample screenshots from some of these applications
are shown in Figure 4.

3D Talking Avatars: 3D avatars can make multiplayer
online games and Virtual Reality (VR) environments more
social and engaging. They may also be employed for au-
dio/video chat applications and virtual visual assistants.
While such avatars can be driven by a video feed from a
web-cam or head-mounted camera, the ability to generate
a 3D talking face from just audio obviates the need for any
auxiliary camera device, and also helps preserve privacy,
while reducing bandwidth requirements at the same time.
Our technique supports generating both 3D textured faces
as well as CGI avatars for these applications.

Video creation and editing: Our approach can be used
for editing videos, e.g. to insert new content in an online
course, or to correct an error without the cumbersome and
sometimes impossible procedure of re-shooting the whole
video under original conditions. Instead, a new audio tran-
script may be recorded for the edited portion, followed by
applying our synthesis technique to modify the correspond-
ing video segment. Such a speech-to-video or text-to-video
system may be useful in multiple domains such as educa-
tion, advertising and entertainment. We can also generate
cartoon renderings for these videos, which may be preferred
in some applications, e.g. sketch videos, stylized anima-
tions, or assistive technologies such as pronunciation visu-
alization.

Video translation and dubbing: Even though we train
our models on videos in a single language, they are surpris-
ingly robust to both different languages as well as text-to-
speech (TTS) audio at inference time. Using available tran-
scripts or a speech recognition system to obtain captions,
and subsequently a text-to-speech system to generate audio,
we can automatically translate and lip-sync existing videos
into different languages. In conjunction with appropriate
video re-timing and voice-cloning [5], the resulting videos
look fairly convincing. We have employed our approach for
translating and dubbing videos from English to Spanish or
Mandarin, and vice-versa. Notably, in contrast to narrator-
driven techniques [7, 12], our approach for video dubbing
does not require a human actor in the loop, and is therefore
more scalable across languages.
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Input | Type

Kernel

Stride

Channels

Outputs

Input (Latent Vector):
= 32D (only audio)

= 34D (Audio + AutoRegressive)

Latent Vector ‘ FC -
Reshape: 4x4x1024
2x Bilinear Upsample
8x8x1024 | Conv
2x Bilinear Upsample
16x16x512 | Conv
2x Bilinear Upsample
32x32x256 ‘ Conv
2x Bilinear Upsample
64x64x128 ‘ Conv
2x Bilinear Upsample
128x128x64 | Conv

3x3

3x3

3x3

3x3

5x5

1x1

1x1

1x1

1x1

1x1

512

256

128

64

3

16384

8x8x512

16x16x256

32x32x128

64 <64 x64

128x128%3

Table 4: Architecture of the texture decoder. Each fully connected (FC) and convolution layer is followed by a ReLU non-
linearity, while only the last convolution layer is followed by a tanh non-linearity. The length of the input latent vector

depends on the mode of the experiment.

Input Type Kernel Stride Channels Outputs
Input (RGB):

=128x128x%3

Input Conv  5x5 2x2 128 64x64x128
64%x64x128 Conv  5x5 2x2 256 32%32x256
32x32%x256 Conv  5x5 2x2 512 16x16x512
16x16x512 Conv  5x5 2x2 1024 8x8x1024
8x8x1024  Conv  5x5 2x2 2048 4x4x2048
4x4x2048  FC - - - 2

Table 5: Architecture of the encoder for the previous atlas in auto-regressive mode. The encoder input is an RGB image and
output is a latent vector. Each convolution layer is followed by a ReLU non-linearity. The last fully-connected (FC) layer is

followed by a tanh non-linearity.

Dataset Test Subject ID

GRID 2,4,11, 13,15, 18, 19, 25, 31, 33
TCD-TMIT | 8,9, 15, 18, 25, 28, 33, 41, 55, 56
CREMA-D | 15,20, 21, 30, 33, 52, 62, 81, 82, 89

Table 6: IDs of subjects used for self-reenactment experiment.

LipGAN  Proposed

Wav2Lip Proposed

TBE Proposed

NVP Proposed

0.07

0.14

0.06 0.13 0.12

0.10 0.18

Table 7: Comparing CPBD metrics (on lower half of faces) of competing methods against our proposed method. For each
method, we select common pairs of videos for the competing and our method from the pool of user study videos.



