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Introduction
This is the supplementary material, which is divided into

the following sections.

• In Sec. 1, we elaborate the details of our implemen-
tation with PyTorch [9] gradient checkpoint function
that significantly saves the training memory.

• In Sec. 2, we also demonstrate the details of the
datasets used in our experiments.

• To show that more confident features are generally
more accurate, the accuracy curve of the predictions
with different confidence values is shown in Sec. 3.

• More illustrations of Grad-CAM [10] are presented in
Sec. 4, which demonstrates that the model trained with
only labeled data is easy to overly use the contexts and
lose self-awareness.

• More examples of visual comparisons are demon-
strated in Sec. 5 to show the superiority of our method.

1. Implementation Details
The gradient checkpoint function is provided in Py-

Torch [9] to reduce the cost of training memory. Normally,
when we forward the tensors to the network, the interme-
diate activations will be automatically stored. In this case,
when computing the gradients in later backward gradient
propagation, we do not need to recompute the intermedi-
ate activations any more, thus saving time and accelerating
the training process. However, in our case, we need to in-
crease the negative samples from 500 to 19.2k, which con-
sumes much more memory if the intermediate activations
are stored. Therefore, we could use the gradient checkpoint
function provided by PyTorch not to store the intermedi-
ate activations. More details about the gradient checkpoint
function can be found in PyTorch official documentation1.

Specifically, we split the loss function computation pro-
cess into several parts, and inside each part, we do not
store the intermediate activations but recompute them in the

1https://pytorch.org/docs/1.6.0/checkpoint.html

backward process. Meanwhile, all other forward processes
except calculating the loss function remain the same, i.e.,
storing the intermediate activations to accelerate training. In
this case, our implementation significantly reduces memory
consumption, while incurring negligible extra training time.
Because calculating the loss function as normal consumes a
lot of memory but a relatively short time. The implementa-
tion details are shown in Algorithm 1.

Algorithm 1 Pseudo code of calculating the loss function
with gradient checkpoint in a PyTorch-like style
# calculate the negative logits of proposed loss function
def calc_neg_logits(feats, pseudo_labels, neg_feats, neg_pseudo_labels):

pseudo_labels = pseudo_labels.unsqueeze(-1)
neg_pseudo_labels = neg_pseudo_labels.unsqueeze(0)

# negative sampling mask (Nxb)
neg_mask = (pseudo_labels != neg_pseudo_labels).float()
neg_scores = (feats @ neg_feats.T) / temp # negative scores (Nxb)
return (neg_mask.float() * torch.exp(neg_scores)).sum(-1)

# feats1: features of the overlapping region in the first crop (NxC)
# feats2: features of the overlapping region in the second crop (NxC)
# neg_feats: all selected negative features (nxC)
# pseudo_labels1: pseudo labels for feats1 (N)
# pseudo_logits1: confidence for feats1 (N)
# pseudo_logits2: confidence for feats2 (N)
# neg_pseudo_labels: pseudo labels for neg_feats (n)
# gamma: the threshold value for positive filtering
# temp: the temperature value
# b: an integer to divide the loss computation into several parts

pos1 = (feats1 * feats2.detach()).sum(-1) / temp # positive scores (N)
neg_logits = torch.zeros(pos1.size(0)) # initialize negative scores (n)

# divide the negative logits computation into several parts
# in each part, only b negative samples are considered
for i in range((n-1) // b + 1):

neg_feats_i = neg_feats[i*b:(i+1)*b]
neg_pseudo_labels_i = neg_pseudo_labels[i*b:(i+1)*b]
neg_logits_i = torch.utils.checkpoint.checkpoint(calc_neg_logits,

feats1, pseudo_labels1, neg_feats_i, neg_pseudo_labels_i)
neg_logits += neg_logits_i

# compute the loss for the first crop
logits1 = torch.exp(pos1) / (torch.exp(pos1) + neg_logits + 1e-8)
loss1 = -torch.log(logits1 + 1e-8) # (N)
dir_mask1 = (pseudo_logits1 < pseudo_logits2) # directional mask (N)
pos_mask1 = (pseudo_logits2 > gamma) # positive filtering mask (N)
mask1 = (dir_mask1 * pos_mask1).float()

# final loss for the first crop
loss1 = (mask1 * loss1).sum() / (mask1.sum() + 1e-8)

2. Details of Datasets
Following previous works [4, 5, 7, 6, 8], our method is

evaluated on PASCAL VOC [2] augmented with annota-



Figure 1. The accuracy curve of the predictions with different con-
fidence values. The predictions are made by the SupOnly model
on the validation set of PASCAL VOC. Best viewed in zoom.

tions from SBD [3], which consists of 10582 training im-
ages and 1449 validation images with one background and
20 foreground classes. Note that both labeled and unla-
beled images are selected from the training images. Also,
our method generalizes well to Cityscapes [1] that contains
2975 and 500 finely annotated images with 19 classes for
training and validation respectively.

3. Confident Features Are More Accurate

As shown in Fig. 1, we observe that for a prediction,
higher confidence generally corresponds to higher accuracy.
This demonstrates that if a feature has higher confidence,
then it generally will be more accurate.

4. Grad-CAM Visualization

Grad-CAM [10] has been proposed to visualize the high-
level features of classification networks. Firstly, it ob-
tains the gradients regarding high-level features at a specific
layer by back propagating the highest activation of the last
layer. After that, it globally averages the spatial gradients
as the weights, which is further used to get a channel-wise
weighted sum with the features at that layer. After min-max
normalization, the result is the heat map of the so-called
Grad-CAM, where the red region corresponds to high con-
tribution.

In our case of the segmentation network, we replace the
last layer feature of the original classification network with
the feature of interest. And then, we calculate the gradi-
ents regarding the last layer features by back propagating
the highest activation of the logits of the feature that we are
interested in. All other operations remain the same.

Fig. 2 demonstrates more Grad-CAM visualizations.
These illustrations show that features of the SupOnly model
are easy to overly use the contexts but overlook themselves,
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Figure 2. More Grad-CAM [10] visualizations of the regional
contribution to the feature of interest (i.e., the yellow cross shown
in the input). The red region corresponds to high contribution.
SupOnly: the model trained with only 1/8 labeled data.

while those of ours can focus on themselves and also make
use of the contexts more reasonably.

5. Visual Comparison
In Fig. 3, we demonstrate more examples of the visual

comparisons. They show that our method is generally supe-
rior to others.
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Figure 3. More visual comparisons with SupOnly (i.e., trained with only supervised loss) and other current state-of-the-art methods.
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