
Supplementary Material for:
CoCoNets: Continuous Contrastive 3D Scene Representations

Shamit Lal*, Mihir Prabhudesai*, Ishita Mediratta, Adam W. Harley, Katerina Fragkiadaki
Carnegie Mellon University

{shamitl, mprabhud, imedirat, aharley, katef} @cs.cmu.edu

1. Overview
The structure of this supplementary file is as follows:

Section 2 covers the details on dataset preparation. Sec-
tion 3 elucidates the implementation details, including in-
puts to our model, architecture details, and hyperparameter
values used. Finally, Section 4 provides a more detailed
analysis of the results.

2. Dataset Preparation
CARLA dataset. We use the CARLA simulator [2] to
generate multi-view data for training, and tracking data for
testing. CARLA is an open-source simulator for urban driv-
ing scenes, which allows multiple cameras to be placed at
arbitrary positions. We generate episodes 300 frames long,
with a framerate of 10 FPS. Each episode is captured from
6 random camera locations, sampled from a set of 18 cam-
eras that lie on a hemisphere. We treat Towns 0-3 as the
training set, and Towns 4-5 as the test set. In total, we use
388 scenes for self-supervised multi-view training and 188
scenes for tracking evaluation. The resolution of our RGB
and depth images is 128x384.

KITTI dataset. We use the KITTI benchmark [3] to eval-
uate our model on the tracking task. We use the “tracking”
subset of KITTI to test our model. This subset has 8008
frames across twenty labelled sequences. We create 8-frame
sub-sequences of this data. We make sure that all the eight
frames have a valid label for the target object. The egomo-
tion information in the “tracking” data is only approximate.

Shapenet dataset. We use the meshes from ShapeNet-
Core [1]. We first normalize the ShapeNet meshes. We
then render RGB-D data for them using Blender, where we
place 24 cameras around the object. The cameras are placed
at a distance of 2m, with azimuth ranging from 0◦ - 360◦ at
intervals of 45◦, and elevation ranging from 0◦ - 80◦ at in-
tervals of 20◦.

*Equal contribution

CLEVR dataset. We build upon the CLEVR Blender
simulator [6]. Our scenes consist of cubes, spheres, and
cylinders. We create scenes as follows: each object model
is randomly rotated (0◦ to 360◦ along vertical axis), trans-
lated (randomly within a sphere of radius 10.5 units) and
scaled (0.25 to 1.25 times the actual size). Each scene con-
tains 2− 10 objects. We randomly vary the lighting of each
scene. We render each scene by placing 28 RGB-D cameras
at elevations ranging from 26◦ to 80◦ with 13◦ increments
and azimuths ranging from 0◦ to 360◦ with 45◦ increments.
Each camera is placed within a sphere of radius 1.5 metres
from the center of the scene.

3. Implementation details
Code, training details and computation complexity.
Our model is implemented in Python/Pytorch. We use a
batch size of 2 and our learning rate is set at 10−4. We
use the Adam optimizer with β1 = 0.9, β2 = 0.999. Our
model takes 24 hours (approximately 100k iterations) of
training for convergence on a single V100 GPU. As far as
the running time of the proposed method for tasks in the ex-
periments is concerned, extraction of point features from
an RGB-D image takes 0.3 seconds for our model on a
V100 GPU. A single iteration of Object tracking (Section
4.1) takes 5 seconds, Object Detection (Section 4.2) takes
0.4 seconds, Object Alignment (Section 4.3) takes 6 sec-
onds and View Prediction using CoCoNets-OccRGB (Sec-
tion 4.4) takes 0.6 seconds.

Inputs. We randomly select images from 2 views which
includes the RGB-D and relative ground-truth egomotion
(query view and target view) as input for training our model,
while we use a single view for testing.

2.5D-to-3D lifting. Our 2.5D-to-3D unprojection module
takes as input RGB-D images and converts it into a 4D ten-
sor U ∈ Rw×h×d×4, where w, h, d is 64, 64, 64. We use
perspective (un)projection to fill the 3D grid with samples
from 2D image. Specifically, using pinhole camera model

1



[4], we find the floating-point 2D pixel location that ev-
ery cell in the 3D grid, indexed by the coordinate (i, j, k),
projects onto from the current camera viewpoint. This is
given by [u, v]T = KS[i, j, k]T , where S, the similarity
transform, converts memory coordinates to camera coordi-
nates and K, the camera intrinsics, convert camera coordi-
nates to pixel coordinates. Bilinear interpolation is applied
on pixel values to fill the grid cells. We obtain a binary oc-
cupancy grid O ∈ Rw×h×d×1 from the depth image D in
a similar way. This occupancy is then concatenated with
the unprojected RGB to get a tensor [U,O] ∈ Rw×h×d×4.
This tensor is then passed through a 3D encoder-decoder
network, the architecture of which is as follows: 4-2-64, 4-
2-128, 4-2-256, 4-0.5-128, 4-0.5-64, 1-1-F . Here, we use
the notation k-s-c for kernel-stride-channels, and F is the
feature dimension, which we set to F = 32. We concate-
nate the output of transposed convolutions in decoder with
same resolution feature map output from the encoder. The
concatenated tensor is then passed to the next layer in the
decoder. We use leaky ReLU activation and batch normal-
ization after every convolution layer, except for the last one
in each network. We obtain our 3D feature map M as the
output of this process. Even though we do not use multi-
ple views as input in the paper, our system can handle that
easily by orienting the feature map Mv obtained from each
view v to a reference view to cancel the egomotion, and then
fusing them to obtain the final feature map M.

Implicit function parameterization. To predict the
features, RGB, and occupancy values for different 3D
physical points within a voxel grid, we use implicit func-
tions parameterized by neural networks. As mentioned
in the main paper, we denote the operation of obtain-
ing point features, occupancies and colors by querying
the feature map M at continuous locations (X,Y, Z) by
Ff (M, (X,Y, Z)) ,Fo (M, (X,Y, Z)) ,Fc (M, (X,Y, Z))
respectively. We parameterize these three functions using
neural networks with identical architectures, with the
exception that the output of Ff , Fo, Fc is 32-D, 1-D
and 3D, respectively. There is no weight sharing between
these three neural networks. For brevity, we will use
F when explaining properties common to all the three
networks/functions.

The architecture of F is similar to that of [9]. Given
the point (X,Y, Z) that we want to featurize, we first infer
the trilinearly-interpolated feature vector at point (X,Y, Z)
from the 8 neighbouring voxel features, which we denote as
c. We encode the coordinate (X,Y, Z) into a 32-D feature
vector using a linear layer. We denote this vector as p. The
inputs c and p are then processed as follows:

out = RNi(RNi−1(· · ·RN1(p+ FC1(c))

· · · ] + FCi−1(c)) + FCi(c)). (1)

We set i = 5 for our usecase. FCi is a linear layer which
gives a 32-dimensional output. RNi is a 2 layer ResNet
block [5]. The architecture of ResNet block is as follows:
ReLU, 32-32, ReLU, 32-32. Here, we use the notation
iu − ou to represent a linear layer, where iu is the input
dimension, and ou is the output dimension of that layer.
Each ResNet block finally generates the output by adding
the input to the output of the above layers. out is then
passed through a ReLU activation function followed by a
linear layer, the output dimension of which depends on the
property of the point we are trying to predict.

CoCoNets on RGB images during inference for 3D
alignment. Our model can operate without depth maps
at inference time. We achieve this by replacing our
bottom-up 3D convolutional encoder-decoder architecture
with a ResNet-18 [5] which directly operates on RGB im-
age from the target view Itarget. Our ResNet-18 encodes
Itarget to a 1D feature vector xtarget. During training,
our top-down mapping of (Iinp,Dinp) to MV

inp and then
to feature cloud {

(
X,Y, Z,F(MV

inp, (X,Y, Z))
)
} remains

the same, we instead replace the bottom-up feature point
clouds obtained from Mtarget with feature point cloud
{(X,Y, Z,F(xtarget, (X,Y, Z)))} obtained by interpolat-
ing the 1D feature vector xtarget. We then train these fea-
ture clouds using the same contrastive loss discussed in Sec-
tion 3 of the main paper. Our bottom-up network gives us
an option to operate without depth images during inference
time. In Section 4.5, we show the comparison on 3D align-
ment of our model operating on RGB versus RGB-D im-
ages.

Volumetric rendering using CoCoNets on RGB images.
We leverage our model’s continuous representations on the
task of rendering novel views on the ShapeNet dataset with-
out depth as input and call it CoCoNetsNoDepthRGB . In
this experiment, since we do not use depth information, we
only pass the RGB image from the input view, Iinp, as an
unprojected 3D tensor U ∈ Rw×h×d×3, to the top-down
3D-CNN encoder-decoder (Figure 1(a) in main file) to get
Minp. Then we take the camera pose change between the
target (the view for which we want to render the image) and
the input view, defined as V , and sample w × h number
of rays, sampling 32 points on each ray, as per the method
given in NeRF [8]. We use these sampled points, defined as
DV

target, to query Minp using trilinear interpolation. There-
after, we use the MLP architecture given in [8] and pass as
input the positional encoding of the query point, its viewing

2



direction and the corresponding interpolated feature vector,
getting (r, g, b, σ) as the output for each query point. Ex-
tracted (r, g, b, σ) of all query points on each ray are then
passed into the volume rendering module of [8] to get the
final RGB image, Îtarget. We use MSE as the rendering loss
between the ground truth RGB, Itarget and the RGB image
rendered by NeRF, Îtarget. Figure 5 (main file) shows the
qualitative results for this experiment. A concurrent work
to this experiment is pixelNeRF [11], with the difference
being that we operate on a 3D feature tensor, whereas [11]
operates on a 2D feature tensor.

4. Results
In this section, we show more results on occupancy pre-

diction, RGB view prediction, dense correspondence, vehi-
cle tracking and pose alignment when operating on RGB
input.

4.1. Occupancy prediction

Figure 1 shows the occupancies predicted by our model
on ShapeNet objects. The first three columns show the
renderings of the mesh created from predicted occupancies
from three views. The last three columns show the corre-
sponding ground truth. We also show multiview renderings
of the predicted occupancies and the ground truth meshes
as GIFs in the supplementary video on our project page and
urge the readers to refer that. At inference time, we extract
meshes by applying Multiresolution IsoSurface Extraction
(MISE) [7]. Table 1 shows the IOU for occupancy predic-
tion for our model on CARLA and ShapeNet datasets. For
ShapeNet, we report the mean IOU over all the classes.

Dataset IOU
CARLA 0.79
ShapeNet 0.56

Table 1: Occupancy prediction evaluation. Metric used is
IOU.

4.2. RGB view prediction

Figure 2 shows qualitative results on the RGB novel view
prediction task by our model on the ShapeNet dataset using
depth as input. On the other hand, Figure 5 in the main file
shows the views rendered without using depth via the NeRF
volumetric renderer. Given an input view (first column),
our model can render the scene from an arbitrary viewpoint
(third column). We compare this rendering with the ground
truth RGB for that view (second column).

4.3. Self-supervised 3D object tracking

Figure 3 shows more qualitative tracking results on
CARLA and KITTI dataset. We have further attached

videos of estimated and ground truth trajectories on our
project page, and we urge the readers to have a look at those
videos for a better understanding of the dataset complexity
and our model’s capabilities.

4.4. Dense correspondence

In this section, we evaluate our features on the task of
establishing correspondence between two instances, I1 (the
Source entity) and I2 (the Target entity), belonging to the
same category. We use the keypoints provided by You et
al. [10] on the ShapeNet dataset for qualitative evaluation.
We assume that the input objects are already aligned. Given
the dense pointcloud for both the objects, we featurize the
points using the approach proposed in Section 3 of the main
paper. Then, for a point (x, y, z) with feature fx,y,z in I1,
we find the corresponding point (x′, y′, z′) in I2 whose fea-
ture f ′x′,y′,z′ has the highest cosine similarity with fx,y,z .
Since the instances are already aligned, we limit this search
to a local neighborhood of radius 10cm. Figure 4 shows
the cross-object correspondence results achieved using the
features learned by our model.

4.5. Using only RGB for pose estimation

In this section, we show the comparison for cross-scene
and cross-object 3D alignment, while operating our model
on RGB versus RGB-D input. For this we follow the same
experimental setup as of Section 4.3 in the main paper. We
refer our model operating on RGB as CoCoNets-RGB. We
show the comparison with CoCoNetsin Table 2.

Method cross-object cross-view
CoCoNets 0.18 0.58

CoCoNets-RGB 0.16 0.39

Table 2: Cross-object and cross-view 3D alignment accura-
cies in ShapeNet dataset (mean over 4 classes: Aeroplane,
Mug, Car, Chair).

3



Predicted occupancies Ground truth meshes

Figure 1: Occupancies predicted by our model for ShapeNet objects. First three columns show the renderings of the mesh
created from predicted occupancies from three views. Last three columns show the same for ground truth mesh.

Predicted occupancies Ground truth meshes

Input view Ground truth
target view

Predicted
target view

Input view Ground truth
target view

Predicted
target view

Figure 2: Neural renders on ShapeNet dataset from CoCoNets-OccRGB. The first column shows the view given as input
to our model. The second column shows the ground truth target view. The third column shows the predicted target view.
Columns 4-6 follow the same convention.

4



Input RGB Input 

Occupancy Neural Map Estimated


trajectory
GT


trajectory

Figure 3: Self-supervised 3D object tracking. In the 1st and 2nd column, we visualize the RGB, the object to track and
depth from the first time frame, which is given as input to our model. In the 3rd column, we visualize our inferred point
features by projecting them to the same RGB image and then doing PCA compression. In the last two columns, we show the
estimated and ground truth trajectories. The top six rows show our results on CARLA; the bottom six rows show our KITTI
results.

5



Source Target Correspondence Zero flow

Figure 4: Cross-object correspondence. First column shows the Source entity. Second column shows the Target entity. The
keypoints shown for these two columns are the ground truth keypoints. Third column shows the keypoints in Target entity
inferred using correspondence from Source to Target. Last column shows the keypoint locations obtained assuming zero-flow
correspondence from Source to Target, i.e. a point at location (x, y, z) in Source gets mapped to the same location in Target.

6



References
[1] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. arXiv:1512.03012, 2015. 1

[2] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. In CORL, pages 1–16, 2017. 1

[3] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? The KITTI vision benchmark
suite. In CVPR, 2012. 1

[4] Richard Hartley and Andrew Zisserman. Multiple view ge-
ometry in computer vision. Cambridge university press,
2003. 2

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[6] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. CLEVR:
A diagnostic dataset for compositional language and elemen-
tary visual reasoning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
2901–2910, 2017. 1

[7] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4460–4470, 2019. 3

[8] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis, 2020. 2, 3

[9] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks, 2020. 2

[10] Yang You, Yujing Lou, Chengkun Li, Zhoujun Cheng,
Liangwei Li, Lizhuang Ma, Cewu Lu, and Weiming Wang.
Keypointnet: A large-scale 3d keypoint dataset aggre-
gated from numerous human annotations. arXiv preprint
arXiv:2002.12687, 2020. 3

[11] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images,
2020. 3

7


