A. Supplementary Material
A.1. Dataset statistics

The Fusion 360 Gallery segmentation dataset contains
a total of 35,858 B-rep bodies with corresponding segmen-
tation information, high quality triangle meshes and point
clouds. The train/test split used in this work is published
with the dataset. It contains 5,399 bodies in the test set,
with the remaining 30, 459 bodies for use training and per-
forming validation. Example designs from the dataset are
shown in Figure 10, colored according to segmentation la-
bel.

The complexity of the models can be understood from
the number of faces per B-rep body and the number of CAD
modeling operations used in their construction. Histograms
of these distributions are shown in Figure 7. Many of the
bodies are relatively simple with half of them having fewer
than 9 faces. There is a long tail of more complicated B-
reps with the most complex having 421 faces. Just over half
of the bodies were constructed with more than one CAD
modeling operation and 31% have two or more. Only 1%
of the bodies used more than 10 operations in the construc-
tion history and the maximum number of operations used to
create any B-rep in the dataset is 59.

As explained in Section 4, the dataset is modeled en-
tirely using extrusions, revolutions, fillets and chamfers.
The Autodesk Fusion 360 CAD package allows the geom-
etry/topology created by each modeling operation to be im-
mediately combined with the body being constructed using
either a boolean union, subtraction or intersection. Extru-
sions are the most common way geometry is created, com-
prising 74% of modeling operations. To avoid a very large
imbalance in the dataset, the collection of faces created by
extrusions are subdivided as follows. When the extrusions
were used to create new bodies or unioned with to exist-
ing bodies, the faces are placed in the Extrude class, while
faces from extrusions which are subtracted from or inter-
sected with existing bodies are placed in the Cut class. The
faces generated by extrusions and revolutions are then fur-
ther subdivided into side and end faces. For extrusions, side
faces are created by sweeping the profile geometry while
end faces are parallel to the plane on which the profile was
sketched. For revolutions, sides faces are created by revolv-
ing the profile. RevolveEnd faces are only created when the
extrusion is not 360 degrees as shown in Figure 9. This
results in eight possible labels: ExtrudeSide, ExtrudeEnd,
CutSide, CutEnd, Fillet, Chamfer, RevolveSide, and Re-
volveEnd.

The fraction of faces with each label type is shown in
Figure 8. We see that just over half the faces are in the Ex-
trudeSide class, making the dataset relatively imbalanced.
In particular the RevolveEnd class is very rare, accounting
for just 0.08% of faces. The CutEnd and Chamfer classes

20

15

10

Total %

al

1 4 7 1013 16 19 22 25 28 31 34 37 40
Number of faces

o

: II
10

1 3 5 7 9 11 13 15 17 19
Number of modeling operations

Figure 7: The distribution of faces per body (top) and of
CAD modeling features used to generate each body (bot-
tom).

60

End faces

Side faces

£nd faces

Figure 9: Side and end faces for extrusions and revolutions.

Te\Ilz/
29
~7 0 w/W 4

-

V.hem @ -
Q'S /e
V! /um.w.

o/.s.

B T p

tfu,.sﬂ‘ o I
«3/2p8 =) B *
gy _to Tenta b g |
T A %\u: X
W 0% 8t 2=y @20 gy

Figure 10: Example designs from the Fusion 360 Gallery segmentation dataset, colored by segmentation label.

Kernel Faces Edges Coedges
Simple edge F,MF | E I M
Asymmetric F,MF | E IN
Asymmetric+ F,MF | E IL M,N
Asymmetric++ | F, MF | E,NE I, M,N
Winged edge F,MF | E, NE, PE, MNE, MPE I, M, N, P, MN.MP
Winged edge+ | F, MF | E, NE, PE, MNE, MPE I, M, N, NM, P, PM, MN,
MNM, MP, MPM
Winged edge++ | F, MF | E, NE, MNE, |[I, M, N, NM, P, PM,
MPE, NMNE, PMPE, | MN, MNM, MP, MPM,
MPMPE, MNMNE NMN, PMP, MPMP,
MNMN

Table 2: The topological walks making up the kernels shown in Figure 5.

are also rare at 2.35% and 2.94% of the faces respectively.
The faces in these classes are often planar, so the correct
segment type can only be identified by considering the sur-
rounding shape. This makes the identification of these rare
classes an extremely challenging task.

A.1.1 Data preparation

In this section we describe the processing performed on the
designs from the Autodesk Online Gallery' to generate the
Fusion 360 Gallery segmentation dataset. Scripts were used
to drive the Application Programming Interface (API) of the
Fusion 360 CAD package to load each Fusion document
and suppress all features except extrusions, revolutions, fil-
lets and chamfers. While this procedure modified the shapes
of some models, it greatly increased the number of B-rep
bodies available for the dataset.

The number of faces and edges in the resulting bodies,
along with the surface area and volume of each body, was
then recorded. To remove duplicate models, we first search
for bodies with the same number of faces and edges. The
area and volume of these candidates are then checked and
bodies for which the area and volume matches to within
1% were discarded. The de-duplication procedure was veri-
fied using thumbnails of the resulting duplicate free dataset.
These were ordered by surface area and images were man-
ually inspected to verify that the area and volume tolerance
was appropriate for detecting duplicate bodies, even when
rigid body transforms had been applied. Models with small
topological differences were not considered to be duplicates
as BRepNet is designed to be sensitive to differences in the
model topology.

All the B-reps in the dataset were transformed to place
the center of their bounding boxes at the origin. A uniform
scaling was then applied so that the largest length of the
bounding box is 2 model units across. Meshes and point

Uhttps://gallery.autodesk.com/fusion360

clouds were then extracted from these scaled models.

A.1.2 Input feature standardization

The input features for BRepNet are standardized using the
following procedure. The mean, i and standard deviation,
o, are computed for each input feature for the entire training
set. The standardized values 2’ are then computed as
T —
= M (1)

g

A.1.3 Support for operation grouping and ordering
problems

In addition to the segmentation data, we also provide more
detailed information about the modeling operations used to
construct the solid. For each B-rep face we provide a unique
identifier for the operation which created it, allowing groups
of faces created by different operations of the same type to
be separated. For extrusions and revolutions we also pro-
vide a classification of the face as Start, End or Side. We
provide the type of each operation and the order in which
the operations were applied in the parametric model his-
tory. For the point cloud and mesh representations we pro-
vide the mapping from each point and triangle to the face
from which it was sampled, allowing this extra information
to be used for all representations. More details on how this
data is organized is in the dataset documentation®.

This additional data is intended to support research into
reverse engineering tasks. Grouping the points or trian-
gles according to the operation which created them is a first
step towards rebuilding the parametric history. Further sub-
dividing each extrusion based on the Start, End and Side
information allows the extrusion direction to be predicted.
Slicing the mesh perpendicular to this extrusion direction
can then allow the profile curves to be extracted and the

Zhttps://github.com/AutodeskAILab/Fusion360GalleryDataset

100

8

o

6

o

IoU (%)

4

o

2

o

o

ExtrudeSide ExtrudeEnd CutSide

CutEnd

B BRepNet

W ECC
PointNet++

B MeshCNN

Fillet Chamfer

RevolveSide RevolveEnd

Figure 11: The per-face IoU values achieved by each network for each segment class.

extruded volumes regenerated. Finally, by predicting the
ground truth operation type and order, sensible sequences
for the modeling operations can be learned.

A.2. Kernels

In Section 5.2 the performance of BRepNet was com-
pared with a number of different kernels. Diagrams show-
ing the entities taking part in these kernels are shown in Fig-
ure 5. In these diagrams each topological walk in the ker-
nel terminates on a distinct entity. It should be noted that
this will not always be the case for arbitrary B-reps data.
Some local topology will result in two or more topologi-
cal walks terminating on the same entity. No special case
handling is required when this happens. The procedure de-
scribed in Equation 2 simply concatenates feature vectors
from the same entity into the same row of ¥ multiple times.
The network learns to recognizer these repeated patterns in
the feature vectors in the same way as in the case where the
entities are distinct. Table 2 gives the full lists of topological
walks which make up the kernels.

A.3. Experiments
A.3.1 Training details

For all the experiments described in Section 5, the BRep-
Net network was trained using the Adam optimizer, with
default parameters (learning rate of 0.001 and betas 0.9 and
0.999). The B-reps in the dataset were divided into mini-
batches, each containing approximately 1000 faces. Multi-
ple B-Reps can be combined into a same batch by row-wise
concatenation of the input feature matrices Xf, X¢ and X©,
and diagonal concatenation of the matrices N, P, M, E and
F. Training and evaluate was performed using NVIDIA
Tesla V100 GPUs. Training took an average of 45s per-
epoch with the network typically achieving a minimum loss
value by around the 15th epoch. Hence the BRepNet net-
work could be trained on the Fusion 360 Gallery segmenta-

tion dataset in under 12 minutes from random seed.

For experiments comparing against PointNet++ and
MeshCNN we use the official implementation and retain
the default hyper-parameters where possible. PointNet++
models are trained with a batch size of 32, a learning rate
of 0.001 and momentum of 0.9 using the TensorFlow im-
plementation® from [2]. The PyTorch implementation* of
MeshCNN was used with a batch size of 12, a learning rate
of 0.0002 and momentum of 0.9. The maximum number of
input edges for any mesh was 3500 and the pooling resolu-
tions were set to 2500, 1750 and 1000.

The ECC used the pytorch-geometric NNConv imple-
mentation’. The Adam optimizer was used for the training
with default parameters (learning rate of 0.001 and betas 0.9
and 0.999).

A.3.2 Comparison of IoU for different classes

In this section we show the IoU values achieved by BRep-
Net, the Edge-Conditioned Convolution (ECC) graph net-
work [3], PointNet++ [2] and MeshCNN [1] for the dif-
ferent classes individually. Figure 11 shows the per-face
IoU values each network achieved on each class and Fig-
ure 12 shows images of the face segmentation on some
example models. We see that a key reason why BRepNet
and the ECC network perform better than PointNet++ and
MeshCNN is their ability to correctly classify faces in the
rare classes.

The RevolveEnd class always consists of planar faces
and accounts for just 0.08% of the dataset. While BRepNet
finds this class challenging, achieving only 49% IoU, both
PointNet++ and MeshCNN fail to identify any RevolveEnd
faces. We believe this is because the RevolveEnd class can
only be identified by considering a face in the context of

3https://github.com/charlesq34/pointnet2
“https://github.com/ranahanocka/MeshCNN
Shttps:/pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

its neighbouring faces and edges. This is something which
the ECC and BRepNet approaches can do easily, as both
networks are designed to leverage information from adja-
cent faces. PointNet++ and MeshCNN have a hierarchical
design which is intended to improve the flow of informa-
tion from neighbouring geometry. PointNet++ achieves an
ToU of 39% of the neighbouring RevolveSide faces, while
MeshCNN achieves only 17%. Neither architecture man-
ages the extremely challenging task of using their identi-
fication of the RevolveSide faces to correctly classify the
adjacent groups of planar points/edges as RevolveEnd.

The CutEnd class is also rare, accounting for just 2.35%
of faces in the dataset. As for RevolveEnd, these faces are
always planar. The primary way they can be distinguished
from the more common ExtrudeEnd faces is by observing
that they are often surrounded by concave edges. Point-
Net++ is able to correctly identify 10.83% of CutEnd faces,
while MeshCNN recognizes just 0.01% of them. While
MeshCNN uses dihedral angle as an input feature, it does
not distinguish between concave and convex edges. This
would explain why MeshCNN struggles to distinguish the
subtractive extrusion classes (CutSide and CutEnd) from
the more common additive extrusions (ExtrudeSide and Ex-
trudeEnd).

The Fillet and Chamfer classes account for 10.22% and
2.94% of faces in the dataset. Fillets are very distinc-
tive features with smooth edges and typically cylindrical or
toroidal geometry. Both BRepNet and the ECC have high
ToU scores for this class (97.57% and 97.32% respectively),
demonstrating that these patterns in the input features are
easy to spot using both architectures. Faces in the Chamfer
class are much less distinctive. They are often planar or con-
ical and their edges can be either concave or convex. Con-
sequently BRepNet and the ECC achieve lower IoU scores
of 81.80% and 71.16%. PointNet++ and MeshCNN also
have higher IoU values for fillets than for chamfers. For
fillets these networks achieve IoUs of 49.31% and 36.49%
respectively while for chamfers PointNet++ achieves only
an IoU of 21.79% and MeshCNN fails to detect any cham-
fer features.

Both Fillet and Chamfer faces tend to have relatively
small areas and consequently are prone to under-sampling
when fixed edge-count meshes and fixed size point clouds
are generated, however the IoU values PointNet++ and
MeshCNN achieve for Fillet suggests this was not a major
limiting factor for the relatively small solids in the Fusion
360 Gallery segmentation dataset. Comparing the results
for Fillet with the less distinctive CutSide class we see that
all network are more successful at detecting fillets, despite
these faces having smaller areas and accounting for a simi-
lar fraction of the dataset.

The ExtrudeSide and ExtrudeEnd classes account for
50.60% and 15.72% of the dataset respectively. All net-

works do well on these classes. It should be noted that for
both BRepNet and the ECC the IoU achieved for the most
common ExtrudeSide class is smaller than for the more dis-
tinctive Fillet class.

References

[1] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: a network with
an edge. ACM Transactions on Graphics (TOG), 38(4):1-12,
2019. 4

[2] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099-5108, 2017. 4

[3] Martin Simonovsky and Nikos Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on graphs.
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jul 2017. 4

[ExtrudeSide I CutSide I Fillet M RevolveSide
[ExtrudeEnd [CutEnd B Chamfer M RevolveEnd

2 ATAY L S
/&% ‘\Q‘Q'ﬁ.
/"ﬁ £\ ® <€

»
1
' 4
’
&
o
i
‘
Ry
N

/&% £\ ®=2@0Y

Ground truth BRepNet PointNet++ MeshCNN

Figure 12: The per-face segmentation generated by each network.

