
Pulsar: Efficient Sphere-based Neural Rendering
– Supplemental Document –

Christoph Lassner1 Michael Zollhöfer1
1Facebook Reality Labs

Figure 1: Reproduced visualization of the neural rendering
pipeline from the main paper. In this supplemental docu-
ment, we describe the technical details of the ‘Differentiable
Projection’ step implemented by Pulsar.

In this supplemental document, we delve deeper into the
implementation details of the Pulsar renderer (a full pipeline
overview is reproduced in Fig. 1; this is Fig. 2 of the main
paper). For this purpose, let’s briefly revisit the scene de-
scription as described in the main paper. We represent the
scene as a set S = {(pi, fi, ri, oi)}Mi=1 of M spheres with
learned position pi ∈ R3, neural feature vector fi ∈ Rd,
radius ri ∈ R, and opacity oi ∈ R. Pulsar implements a
mapping F = R(S,R, t,K) that maps from the 3D sphere-
based scene representation S to a rendered feature image F
based on the image formation model defined by the camera
rotation R, translation t, and intrinsic parameters K. R is
differentiable with respect to R, t and most parts of K, i.e.,
focal length and sensor size.

The Aggregation Function The rendering operation R
has to compute the channel values for each pixel of the fea-
ture image F in a differentiable manner. To this end, we
propose the following blending function (Eq. 1 of the main
paper) for a given ray, associating a blending weight wi with
each sphere i:

wi =
oi · di · exp(oi · ziγ)

exp(εγ) +
∑
kok · dk · exp(ok ·

zk
γ)

. (1)

We employ normalized device coordinates zi ∈ [0, 1] where
0 denotes maximum depth and di is the normalized orthog-
onal distance of the ray to the sphere center. This distance,
since always orthogonal to the ray direction, automatically

provides gradients for the two directions that are orthogo-
nal to the ray direction. Strictly speaking, for one ray this
direction gradient could be non-existent if the ray hits the
sphere in its center; or it could just provide gradients in one
of the two remaining directions if it hits the sphere perfectly
above or to the side of its center. We provide position gradi-
ents only for spheres that have more than three pixels pro-
jected radius because we observed that the gradients are nu-
merically not stable otherwise. This means, that if position
gradients are provided they can move spheres in all direc-
tions in space. We define di = min(1, ||

~di||2
Ri

), where ~di is
the vector pointing orthogonal from the ray to the sphere
center. Like this, di becomes a linear scaling factor in [0, 1].

A notable property of the proposed aggregation function
is, that it is commutative w.r.t. the sphere order. This will
become important in the following sections.

1. Data-parallel Implementation

Modern GPU architectures offer a tremendous amount of
processing power through a large number of streaming mul-
tiprocessors and threads, as well as enough memory to store
scene representations and rendered images in GPU mem-
ory. For example, even an NVIDIA RTX 2080 Ti consumer
GPU has 4352 CUDA cores with 64 streaming multipro-
cessors with access to up to 11GB of memory. The CUDA
cores/threads are grouped in warps of 32 threads. Multiple
warps again can work together in groups. Warps have par-
ticularly fast local shared memory and operations, however
all threads in a warp execute exactly the same command on
potentially different data, or a part of them must sleep. This
computing paradigm is called ‘Single instruction, multiple
data’ (SIMD). For example, if half of the threads follow a
different execution path due to an ‘if’ statement than the
rest; in this case the half not following the branch will sleep
while the first half executes the relevant commands.

All these architectural peculiarities must be taken into
account to use GPU hardware efficiently. This requires
making smart use of parallel code and finding good memory
access patterns to not block execution through excessive IO
loads. Because both of these aspects tightly connect, non-

intuitive solutions often turn out to be the most efficient and
experimentation is required to identify them.

We found a way to keep the computation throughput high
by elegantly switching between parallelization schemes and
by using finely tuned memory structures as ‘glue’ between
the computations. In the following sections, we aim to dis-
cuss these steps, the underlying memory layout and the par-
allelization choices made.

1.1. The forward pass

For the forward pass, the renderer receives a set of n
spheres with position pi, features fi, radius ri and opacity
oi for each sphere i ∈ 1, . . . , n. Additionally, the camera
configuration R, t and K must be provided. Assuming we
have a commutative per-pixel blending function, Eq. 1, the
first fundamental choice to make is whether to parallelize
the rendering process over the pixels or the spheres.

Parallelizing over the spheres can be beneficial through
the re-use of information to evaluate the rendering equa-
tion for pixels close to each other. However, this approach
leads to memory access collisions for the results (writing
access to all pixel values must be protected by a mutex),
which obliterates runtime performance. The second alter-
native is to parallelize rendering over the pixels. To make
this strategy efficient, it is critical to find a good way to
exploit spatial closeness between pixels during the search
for relevant spheres. It is important to reduce the amount
of candidate spheres (spheres that could influence the color
of a pixel) for each pixel as quickly as possible. This can
be achieved by mapping spatial closeness in the image to
‘closeness’ on GPU hardware: thread groups can analyze
spheres together and share information. Overall, a two step
process becomes apparent: 1) find out which spheres are
relevant for a pixel (group), 2) draw the relevant spheres for
each pixel. Both steps must be tightly interconnected so that
memory accesses are reduced to a minimum.

By design of our scene parameterization the enclosing
rectangle of the projection of each sphere is simple to find.
But even in this simple case we would do the intersection
part of the calculation repeatedly: every pixel (group) would
calculate the enclosing rectangle for each sphere. This is
why we separate the enclosing rectangle computation as
step (0) into its own GPU kernel. Importantly, through this
separation, we can parallelize step (0) over the spheres and
use the full device resources.

1.1.1 Step 0: Enclosing Rectangle Calculation

This step is parallelized over the spheres. It uses K, pi
and ri to determine the relevant region in the image space
for each sphere and to encode the intersection and draw in-
formation in an efficient way for the following steps. The
standard choice for such an encoding is a k-d-tree, bound-

ing volume hierarchy (BVH) or a similar acceleration struc-
ture. We experimented with (extended) Morton codes [3, 4]
and the fast parallel BVH implementations [1, 2] and found
their performance inferior1 compared to the following strat-
egy using bounding box projections.

Instead of using acceleration structures, the sphere ge-
ometry allows us to find the projection bounds of the sphere
on the sensor plane. This is done with only a few com-
putations for the orthogonal but also the pinhole projection
model. In the pinhole model, the distortion effects make
slightly more complex computations necessary; trigono-
metric functions can be avoided for higher numerical ac-
curacy through the use of several trigonometric identities.

Additional steps must be taken to robustify the calculated
boundaries for numerical inaccuracies. We make the design
choice to have every sphere rendered with at least a size of
one pixel: in this way, every sphere always receives gradi-
ents and no spheres are ‘lost’ between pixel rays. We store
the results of these calculations in two data structures:

Intersection information This is a struct with four
unsigned short values and contains the calcu-
lated x and y limits for each sphere. This data struc-
ture needs 8 bytes of memory. One cache line on
the NVIDIA Turing GPUs holds 256 = 8 · 32 bytes,
meaning that all 32 threads in a warp can load one of
these data structures with one command. This makes
coalesced iteration fast, which helps to process large
amounts of intersection data structures in parallel.

Draw information This is a struct with all the informa-
tion needed to draw a sphere once an intersection has
been detected. We store the position vector, up to three
feature value floats or a float pointer (in case of more
than 3 features), as well as the distance to the sphere
center and the sphere radius. This requires 8 · 4 =
32 bytes of storage per sphere. The importance of this
step is to localize all required information and convert
a ‘struct of arrays’ (separate arrays with position, ra-
dius, colors) to an ‘array of structs’ (one array of draw
information structures) with the required information.

After this step, all input variables (pi, fi, ri and oi) are
encoded in these two datastructures and only used from
these sources. The computation and storage run in 0.22ms
for 1 000 000 spheres. We additionally store the earliest
possible intersection depth for each sphere in a separate ar-
ray. For spheres that are outside of the sensor area, this

1We used our own implementation that closely follows Karras et
al.’s papers but is likely slower than theirs. We evaluated the patented
tr-BVH implementation in the NVIDIA OPTIX package (https://
developer.nvidia.com/optix). However, OPTIX does not pro-
vide access to the acceleration structure and just allows to query it. This is
insufficient for our use case because we need to find an arbitrary number
of closest spheres to the camera; we decided not to use OPTIX to avoid the
runtime hit of manual sorting.

value is set to infinity. Then, we use the CUB library2 to
sort the intersection information and draw information ar-
rays by earliest possible intersection depth. This step takes
another 3.2ms for 1 000 000 spheres. The sorting is impor-
tant for the following steps: the sphere intersection search
may be stopped early once it has been determined that no
sphere with a greater distance can still have a notable im-
pact.

1.1.2 Step 1: Intersection Search

The aim for this step is to narrow down the number of
spheres relevant for pixels at hand as much and as quickly as
possible, leveraging as much shared infrastructure as possi-
ble. That’s why in a first processing step, we divide the
entire image into nine parts3 (an empirically derived value).
The size of each of the nine parts is a multiple of thread
block launch sizes (we determined this to be 16 · 16 pixels
on current GPU architectures). All nine parts are processed
sequentially. For each part, we first use the full GPU to it-
erate over the intersection information array to find spheres
that are relevant for pixels in the region (we can again par-
allelize over the spheres). Using the CUB select flags
routine, we then quickly create arrays with the sorted, se-
lected subset of intersection information and draw informa-
tion data structures for all spheres (important: the spheres in
this selected subset are still sorted by earliest possible inter-
section depth). From this point on, we parallelize over the
pixels and use blocks and warps to use coalesced processing
of spheres.

The next level is the block-wise intersection search. We
use a block size of 16 · 16 = 256 threads, so eight warps
per block. We observed that larger block sizes for this op-
eration always improved performance, but reached a limit
of current hardware at a size of 256 due to the memory re-
quirements. This indicates that the speed of the proposed
algorithm will scale favorably with future GPU generations.

We implement the intersection search through coalesced
loading of the intersection information structures and test-
ing of the limits of the current pixel block. The sphere draw
information for spheres with intersections are stored in a
block-wide shared memory buffer with a fixed size. This
size is a multiple of the block size to always be able to
accommodate all sphere hits. Write access to this buffer
needs to be properly synchronized. If the buffer becomes
too full or the spheres are exhausted, Step 2 execution is
invoked to clear it. In Step 2, each pixel thread works au-
tonomously and care must be taken to introduce appropri-
ate synchronization boundaries to coordinate block and sin-
gle thread execution. Additionally, each pixel thread can

2http://nvlabs.github.io/cub/
3During sorting, we also find the enclosing rectangle for all visible

spheres and use this information for tighter bounds of the region to draw.

vote whether it is ‘done’ with processing spheres and fu-
ture spheres would have not enough impact; if all pixels
in a block vote ‘done’, execution is terminated. The vote
is implemented through a thread-warp-block stage-wise re-
duction operation.

1.1.3 Step 2: the Draw Operation

The draw operation is executed for each pixel separately and
for each sphere draw information that has been loaded into
the shared memory buffer. Because every pixel is processed
by its own thread, write conflicts for the channel informa-
tion are avoided and each pixel thread can work through the
list of loaded draw information at full speed. The intersec-
tion depths for each sphere are tracked: we use a small (in
terms of number of spheres to track; this number is fixed at
compile time) optimized priority queue to track the IDs and
intersection depths of the closest five spheres for the back-
ward pass. Additionally, updating the denominator of the
rendering equation allows us to continuously have a tracker
for the minimum required depth that a sphere must have for
an an n percent contribution to the color channels. If set
(default value: 1%), this allows for early termination of the
raycasting process for each pixel.

1.1.4 Preparing for the Backward Pass

If a backward pass is intended (this can be optionally de-
activated), some information of the forward pass is written
into a buffer. This buffer contains for each pixel the normal-
ization factor as well as the intersection depths and IDs of
the closest five spheres hit.

We experimented with various ways to speed up the
backward calculation, and storing this information from the
forward operation is vastly superior to all others. It allows to
skip the intersection search altogether at the price of having
to write and load the backward information buffer. Since
writing and loading can be performed for each thread with-
out additional synchronization, it still turned out to be the
most efficient way.

1.2. The Backward Pass

Even with the intersection information available, there
remain multiple options on how to implement the backward
pass. It is possible to parallelize over the spheres (this re-
quires for each thread to iterate over all pixels a sphere im-
pacts, but it avoids synchronization to accumulate gradient
information) or over the pixels (this way each thread only
processes the spheres that have been detected at the pixel
position, but requires synchronization for gradient accumu-
lation for each sphere). We found that parallelizing over
the pixels is superior, especially since this implementation
is robust to large spheres in pixel space.

Again, minimizing memory access is critical to reach
high execution speeds. To achieve this, we reserve the mem-
ory to store all sphere specific gradients. Additionally, we
also allocate a buffer for the camera gradient information
per sphere. We found that accumulating the sphere gra-
dients through synchronized access from each pixel thread
is viable, but synchronizing the accumulation of the cam-
era gradients, for which every sphere for every pixel has a
contribution, causes too much memory pressure. Instead,
we accumulate the camera gradients sphere-wise and run a
device-wide reduction as a post-processing step. This re-
duces the runtime cost to only 0.6ms for 1 000 000 spheres.

Overall, this implementation proved robust and fast in a
variety of settings. Apart from being nearly independent
of sphere sizes, it scales well with image resolution and
the number of spheres. We found additional normalization
helpful to make the gradients better suited for gradient de-
scent optimization:

• sphere gradients are averaged over the number of pix-
els from which they are computed. This avoids param-
eters of small spheres converging slower than those
of large spheres. In principle, large spheres have a
larger impact on the image, hence receive larger gra-
dients. However, from an optimization point of view,
we found the gradients normalized by the number of
pixels are much better suited for stable loss reduction
with gradient descent techniques.

• camera gradients need to take the sphere size into ac-
count to lead to a stable optimization. We use the area
that each sphere covers in the image as a normalization
factor (together with the constant 1× 10−3, which we
found approximately suitable to avoid having to scale
sphere and camera gradients differently in gradient de-
scent optimization). The area normalization makes this
calculation very similar to Monte Carlo integration.

The gradient computation for each of the gradients is
only performed if the gradients are required by the Py-
Torch autodiff framework. Overall, using these strategies
we achieve very good scaling behavior as demonstrated in
Fig. 3 of the main paper.

References
[1] Tero Karras. Maximizing parallelism in the construction of

bvhs, octrees, and k-d trees. In Proceedings of the Fourth ACM
SIGGRAPH/Eurographics conference on High-Performance
Graphics, pages 33–37, 2012.

[2] Tero Karras and Timo Aila. Fast parallel construction of high-
quality bounding volume hierarchies. In Proceedings of the
5th High-Performance Graphics Conference, pages 89–99,
2013.

[3] Guy M Morton. A computer oriented geodetic data base and
a new technique in file sequencing. 1966.

[4] Marek Vinkler, Jiri Bittner, and Vlastimil Havran. Extended
morton codes for high performance bounding volume hier-
archy construction. In Proceedings of High Performance
Graphics, pages 1–8. 2017.

